Massage: A case for the defence

fmsl8

Just because we can’t prove what something does, doesn’t mean it doesn’t do anything.

The older I get, the more I read, the less I know. I know that for a fact. But recently I’ve started re-reading around the topic of massage and its place in sport and recovery. And with my critical head on, the one thing that I can consistently critique is the literature. The methodology, the participant population, but not necessarily “Massage” itself.

A good starting point for this defence would be to read the antithesis for this blog, a great blog by @AdamMeakins (There is no skill in manual therapy). Adam makes a valid point that there is not a strong background of evidence to support massage. Agreed. And its worth pointing out that a large, very large, part of my practice is exercise based rehab – I’m a strong believer of “move well, move often”. However, massage is a very well used tool in my pocket of possible treatments, so I’m going to fight for the underdog.

Below is a summary of terms / applications commonly used with recognised massage techniques (not an exclusive list).

Table 1: A summary of western massage techniques (Weerapong et al)

Technique Definition Suggested Application Proposed clinical effects
Effleurage Gliding movement over the skin in a continuous movement Beginning & end of a session Stimulates the parasympathetic nervous system, promotes relaxation and enhances venous return.
Pretissage Lifting, wringing, squeezing and kneading of soft tissue. Following effleurage Mobilise deep muscle and subcutaneous tissue. Increases local circulation and enhances venous return
Friction An accurate penetration of pressure applied with the fingertips Used for specific purposes, such as reducing muscle spasm or breaking down adhesions. Break down adhesions from old injuries
Tapotement Various parts of the hand striking the tissues in a rhythmical but rapid rate Before and during competition Stimulation of tissues either by direct mechanical force or by the reflex action

 

The problem with Evidence Based Practice:

I think that all medical professions are dependent on research to ensure our practice evolves for the better. But I think sometimes we overlook the importance of anecdotal evidence. It must be considered that not all aspects of sporting competition depend on physical attributes, the mind and perceived benefits of treatment play an important role. The majority of people that go back for massages are because it made them feel better. Maybe not during, but after. A prime example, my wife never says “Can you give me an exercise program for my neck & shoulders please?” But I know that anecdotal evidence on its own doesn’t wash.

So here is where I think the literature lets massage down. The effectiveness of massage will vary depending on duration, method and depth of pressure (Drust et al) however none of these variables have been standardized making comparisons between studies very difficult (Mancinelli et al).

Jönhagen et al investigated the effects of sports massage on recovery following eccentric exercise. 16 “recreational athletes” (I have issues with this terminology for a start) were asked to complete 300 maximal eccentric contractions of their quadriceps using a Kin-Com dynamometer. Subjects received a pretissage massage once a day for 3 days before re-testing single leg long jumps to analyse “functional recovery”. SHOCK – The study found no improvement in function following massage.

51pbxuNg7FL._SX200_
@ConorMcGoldrick has been quiet on blog front, but promises he is still working hard in the gym. Trying a new technique of 300 eccentric max contractions

 

  • Firstly, it may not be possible for one to truly maximally contract for such a high number of repetitions, therefore cannot be considered functional for an athlete; professional or recreational.
  • Secondly, name a sport that requires 300 maximal eccentric contractions in succession. Even an eccentric dominant sport like basketball would be interspersed with periods of rest and I don’t imagine basketball players would define those eccentric actions as maximal.
  • Thirdly, pretissage is a deep and firm technique, the use of which immediately following 300 eccentric contractions and continued for 3 days is more than likely going to cause mild muscle trauma. Not exactly a therapeutic choice for a tissue with acutely induced micro-trauma.

In another study investigating fatigue, Zainuddin et al studied the effects of massage on the upper limb following 60 maximal eccentric contractions of the elbow flexors of a single arm in 10 healthy subjects (5:5 M:F). The results indicated no significant change between the two arms in isometric & isokinetic strength and torque, but it did find reductions in muscle soreness and swelling. The lack of significance in the results may be due to measurements, including maximal strength, being taken before, immediately and 30 minutes after, and at 1, 2, 3, 4, 7, 10 & 14 days after, which may have been too many re-assessments of maximal strength following eccentric activity. Also, the 10 minute massage protocol consisted of 3 minutes frictions to the major muscles in the upper limb. As explained earlier, frictions are designed to promote inflammation, not to promote recovery!

The point of these studies was to investigate the use of massage in recovery from sport. Eliciting DOMs in untrained subjects and concluding that they still hadn’t returned to baseline in 3 days is not representative of the demands you will be faced with in sport. For the most part, the athletes are familiar with the exercise, so apart from pre-season or the introduction of a new exercise technique, DOMS is relatively rare throughout a season.

lactic-acid-myths
No blog on massage would be complete without mentioning Lactic Acid

Fatigue is believed to be determined by the accumulation of lactate in exercising muscle (Monedero & Donne). However, the notion that lactic acid (consisting of lactate ions and H+) is detrimental to muscle function is derived from early findings on amphibian muscles, in which acidosis is more pronounced than mammalian musculature. These early studies were conducted at 10-20°C, when they were repeated at 25-30°C the effects of acidosis were abolished (Cairns). Studies on human skeletal muscles have shown a positive correlation between increased lactic acid and muscle fatigue, but what is usually overlooked is that there is also a relationship between fatigue and a decrease in ATP, increases in inorganic phosphate and increased ADP, as well as decreased nitrous oxide and reactive oxidative species (Franklin et al) – so why do we bang on about lactate clearance all the time?!

There is now a belief that lactic acid may have ergogenic effects on performance. It is well known that acidosis stimulates the Bohr effect, whereby H+ causes the release of oxygen from haemoglobin, which stimulates increased ventilation, enhanced blood flow, and an increased cardiovascular drive. (Cairns). Despite this recent shift in opinion, many studies still believe lactate to be detrimental to performance, and investigations continue into the most efficient method of lactate removal.

Monedero & Donne investigated different recovery strategies after maximal exercise using 18 trained cyclists. It was concluded that a combined treatment of massage and active recovery was significant in aiding future performance compared to passive recovery, active recovery or massage alone. Despite quoting in the introduction that “the role of lactate in fatigue is questionable”, the removal of lactate forms the bulk of the conclusion as to why massage alone was not a viable treatment for recovery.

 

Judging a fish by its ability to climb trees:

I mentioned earlier that I have reservations over the term “recreational athletes” – its unclear if this is an accepted scholarly word for “weekend warrior” or if its 3-times-a-week gym goers at the local spa and health club. Even so, the use of these participant populations to make assumptions on elite sport should be taken with caution. So should the use of athletes asked to perform unfamiliar tasks. Robertson et al used cycling to exhaust 9 male subjects and found no significant effect with blood lactate clearance following 20 minutes massage. However participants were from field based backgrounds such as football, rugby and hockey.

A study by Mancinelli et al investigated the effects of massage on DOMS using female athletes. 24 volleyball and basketball players underwent a vigorous strength and conditioning training session to elicit DOMS. The study found that the massage group (n=12) had significant increases in vertical jump scores (P=0.003) and decreased levels of perceived soreness (P=0.001), while the control group significantly increased their shuttle run times (P=0.004). The study that used functional tests appropriate to the subjects sport found favourable results for massage.

More recently, in a series of studies Delextrat et al (and again here) compared the benefits of massage alone and in combination with other recovery modalities (stretching; cold water immersion) using basketball players. Again using measure specific to the sport. While I question the conclusions about different reactions between sexes (9:8 M:F), there was significant improvements in interventions compared to control groups, supporting the use of massage as a recovery modality.

massage

So what do we think massage might do but we can’t prove?

“Massage therapy modulates the autonomic nervous system” – Franklin et al

The good thing about the Franklin paper is that it looks at potential systemic effects of massage, in particular the vascular endothelial function of the upper limb following lower limb massage – and they found a single treatment of massage had an immediate (90mins) parasympathetic nervous system response, characterised by reduced heart rate and reduced systolic blood pressure.

We think that massage, administered appropriately with appropriate techniques to suit the situation, may:

  • Decrease pain (Mancinelli et al; Delextrat et al)
  • Reduce swelling (Weerapong et al)
  • Improve mood state (Hemmings et al; Robertson et al)
  • Increase range of movement (Rushton et al)

I would question the last point – for how long does this influence last? Do we actually increase length? Or do we restore it following a loss of range (injury / pain / change in tone following exercise)? I don’t think even regular massage is enough to encourage creep deformation on tissues, but I’m more open to a change in tone to achieve an optimal length / range.

 

Conclusion:

Therapists working within a sports setting often have to adapt the duration of a massage depending on the number of athletes that require treatment, the number of clinicians available, the seniority of players (!) Clinical based MSK therapists may also be restricted by time constraints. There is also a dearth of techniques and combinations with other modalities to chose from. Two therapists performing the same technique will apply different pressures for different durations in slightly different directions possibly over different tissues. I can see this being an argument against, but its for this reason that its very difficult to measure and quantify effectiveness. To create a sturdy study design, you end up being far removed from how clinical practice actually operates. My point is, although it is important I don’t think you can base an opinion of an intervention soley on published literature.

A lot of the literature with non-significant findings will question the use of massage in clinical application, but I can’t think of any occasions where the intervention has caused a detrimental effect! This leads me back to my first sentence.

Just because we can’t prove what something does, doesn’t mean it doesn’t do anything.

Remember that the field I practice in means I’m exposed to athletes for long periods of time through the day and through the week. As a proportion of that day, massage does not make up a large percentage of treatment time. Gym based, movement optimisation does. So I’m not saying we should all go and massage every athlete and patient that requests it. Like everything I think there are certain individuals that benefit from certain techniques and methods. Given time restraints in an outpatients clinic, it may not feature at all as part of my treatment. But regardless of the size this cog plays in the treatment machine, I believe its a valuable one.

Little-cogs Yours in sport

Sam

#Groin2014 – a not so brief summary

Any one familiar with twitter may have seen the recent hash tag for the 1st World Conference on goring pain in athletes (#Groin2014). This conference in Doha, Qatar was brilliantly orchestrated by Adam Weir (@AdamWeirSports) and his team at Aspetar. Run over three days and cram packed with information, I’m going to try and summarise the points that I found most interesting and thought provoking – please be aware these are my interpretations of what other speakers said and do not serve justice to the quality of the talks and presentations.

Confernece
Yes, I was the only delegate in shorts and flip-flops

I have themed the findings into 3 main categories: Epidemiology; Adductor related pathologies & Femoral Acetabular Impingement (FAI) (Not an exclusive list of things discussed at the conference)

Introduction

What quickly became clear through the presenters was that even in 2014, we categorise injuries far too broadly. Consider the structures involved in the “Groin” and its no wonder why this area of the body see’s such huge injury occurrences.  Also, our terminology needs to be more accurate. Per Holmich (@PerHolmich) brilliantly said “Pubalgia is as specific as saying Kneealgia” we need to be more concise with our terms if we are going to understand the pathologies and management better.

That said, a lot of the current research into epidemiology does categories pathologies into hip /groin. So we have to go with the stats that are in front of us. And what are they…

Epidemiology

Of 110 multi-sport athletes assessed by Andreas Serner (@aserner), 76% of these injuries occurred in football-code sports. Markus Walden’s (@MarkusWalden) systematic review of 12 papers found that “Groin injuries” accounted for 9-18% of all injuries in mens football, with greater time loss of injury seen in tournament football compared to the regular season. Is this because of better monitoring at club level? Where medical teams know the players in a detail that international staff can’t due to limited exposure to players? Or as Walden says, is it due to the acute nature of injuries in tournaments due to reduced recovery and increased fatigue?

Both Walden and John Orchard (@DrJohnOrchard) found a greater incidence of groin injuries in men compared to women. It was suggested that the anatomical variance in womens hips puts them at more risk of lateral hip and knee pain rather than groin pain. The inguinal canal deficiency is also greater in men than womens.

Adductor Related Pathologies

Walden reports that 64% of groin related injuries are adductor related. This was supported by Serners paper with adductor longus being the most frequently injured of the adductor muscles. The picture below demonstrates Serners findings that 1/4 of all diagnosed injuries are negative on imaging, and that clinical presentations of rectus femoris & iliopsoas especially, often appear different on imaging.

Serner
Treat the player, not the scan!

Looking at risk factors for adductor pathologies, Jackie Whittaker (@jwhittak_physio) highlighted the basic but fundamental fact that previous injury is the biggest risk factor for future adductor pathology. Secondary to this, isolated adductor strength is a good indicator – ability to perform a squat is not! (Useful for those collating Injury Screening tools). Building on from Whittaker, Andrea Mosler (@AndreaBMosler) agreed that reduced strength coupled with positive pain on 45 degree adductor squeeze highlighted strong evidence for future groin pathology. Mosler summarised the following battery of tests for risk factors with adductor related groin pain:

Adductor strength – Strong evidence that low scores indicate future groin pain

BKFO (Bent knee fall out) – strong evidence that less flexible patients have greater risk of pathology

IR (Internal Rotation) – moderate evidence between decreased IR range and pathology

ER (External Rotation) in neutral – NO evidence to link decreased range and pathology. (Despite this lack of evidence, Geoff Verrall (@GeoffreyVerrall) does highlight a loss of ER in sport due tightening of the pubofemroal ligament and shortening of the adductors – improving this ER will help with force dissipation – so assessment is still valid!)

Eamonn Delahunt (@EamonnDelahunt) presented his research findings of squeeze assessments and groin pathologies, concluding that 45 degree squeeze has the highest sEMG and strength values (mmHg) of the 3 traditional squeeze measures. Contradictory to Moslers & Delahunts assessment of the adductors, Kristian Thorborg (@KThorborg) favoured long lever assessment when assessing for strength and pain. Pain provocation tests at a 0-degree squeeze is the best assessment to “rule adductor longus in.” While Delahunt drew his conclusions from a small population of gaelic footballers over a 6 month review period, Thorborg presented around 12 of his studies looking into the assessment of groin related pathologies. What is worth considering, is what structures are being affected when testing at these different ranges. As you’ll see below, it is a very complex and integrated part of the body.

Anthony Schache emphasised the importance of understanding the anatomy of the groin, in particular the soft tissue attachments. “Antomoy books provide discrete anatomy definitions which implies discrete anatomy – but this is not true.” The image below highlights the intimate attachments of surrounding structures in the groin.

anatomy
Cadaveric groin anatomy – shows distinct LACK of “discrete anatomy” especially insertions

 

Per Holmich was keen to build further on these assessments as part of a clinical diagnosis, saying that adductor pain replicated with stress tests PLUS pain on palpation of the adductor origin (must be “the patients pain”) indicates that the adductors are the main driver of pain – any one identifying factor on its own is not enough to indicate a diagnosis. But, consider what Schache said about the anatomy – we would need to ensure that our palpation skills were incredibly accurate. You can see how being a centimetre out when palpating the pubic bone for the adductor origin could be the difference between adductor longus (AL) or gracilis, or rectus abdominus. For this reason, its important to take your time when palpating this area, although it can be uncomfortable for both practitioner and patient, but confidently & slowly working your way around the attachments could help improve your diagnosis.

Of significant interest regarding the adductors is the difference in anatomy. Stephanie Woodley describes the intramuscular tendon of AL as being 23% of the femur length, compared to 11% of femur length for adductor brevis. Also significant is the decreased vascularity of AL, less than that of brevis and both of these are less than that of gracilis. If we now consider that AL is the most commonly injured structure in the groin, could this be a cause of injury rates? At any rate, it is certainly a consideration worth knowing for healing times.

FAI

Both Damian Griffin and Joanne Kemp (@JoanneLKemp) were keen to clarify the terminology of FAI. FAI relates to the pain caused by a CAM or Pincer lesion,  CAM or pincer lesions don’t necessarily mean FAI.

“Athletes will undergo increased loads and greater demands on joints (ROM) than the general public, therefore impingements that are asymptomatic with ADL’s become FAI in sporting population” Damian Griffin.

Rintje Agricola describes an increased risk of FAI in males, especially in a sporting population but most interestingly reports that FAI is not prevalent in the non-athletes – therefore are we looking at a preventable pathology?

Increased loading over growth plate stimulates CAM deformity
Increased loading over growth plate stimulates CAM deformity

We believe now that CAM deformities develop around 12-13 years old (Agricola and Kemp), the same age that IGF1, key for bone development, peaks in adolescent males. ER and flexion increase weight bearing through the femoral neck and lateral femoral head, around the growth plate, so increased physical activity at this stage of development will promote bony changes on these lateral surfaces. The population most at risk would athletes specialising in one sport, say football academies, where they increase their training volume and intensities as they physically mature.

If we understand this to be true, should we now seriously start to consider activity modification for children in this stage of development? Obviously we would need to understand stages and rate of physical maturity for individuals, and then there is a bigger debate of getting coaches on side for this change in loading.

The presence of a CAM deformity may not cause FAI in all individuals. However Schache gives an example where a CAM lesion may actually provide a false positive, or exacerbate existing symptoms. If we assessing IR range through a flexed position, a CAM lesion may act as a lever on the pubic synthesis and increase stress in this area. So a detailed assessment and knowledge of individual hip morphology would help us differentiate between an impingement or pubic synthesis stress.

Staying with this thought process of structural limitations through range, Morritz Tannast explained benefits of assessing rotation in neutral and through flexion. In a neutral hip, with legs hanging off the end of the plinth, we can assess the posterior wall of the hip joint. Extra-articular impingement in this position is most likely to come from the lesser trochanter and the ischium. In prone, we can assess the degree of ante torsion of the femoral head by looking at total range of rotation, so:

– Low antetorision would present as decreased IR and increased ER

– High antetorsion would therefore present as increased IR and decreased ER

Assessing through slight flexion, abduction and ER any extra articular impingement will be from the ischium up against the greater trochanter and our old friend, a CAM lesion. Griffin advocates the use of control and low speed with impingement tests, encouraging clinicians to explore the contact surface of the acetabular ring.

So far through this summary, we have stayed very insular with our assessment and anatomy. Kemp encourages the clinician to consider the control of the trunk with hip pathology. An increased anterior pelvic tile will equal and increased acetabular retroversion and a decreased IR at 90 hip flexion. Sometimes, it may not be the presence of a CAM deformity reducing that range, so on this final point summarising the hip and groin, I wold encourage people to still consider the bigger picture of the patient and what role the hip / groin plays in a combination of movement patterns and dysfunctions.

Taking this forward

There is a great deal, and I mean a huge amount, that I have not discussed. Secondary cleft signs of the pubic synthesis or surgical interventions for hip & groin pathology for example. But one topic I have not discussed that is probably glaringly obvious is the treatment and management.

In terms of exercise prescription, I think this will be led by your clinical abilities to diagnose the pathology (Remember Serners findings above, don’t just treat the scan!) Hopefully this summary will encourage to you read more of the presenters own works, or maybe it has re-enforced your understanding of what is a complex structure in the body. Essentially management of this area is much like any other in the body, we identify complications or restrictions and we address them. Usually this is a global approach, looking at the whole kinetic chain  – remembering that this conference focused on a very key, but isolated area of that chain.

If you are still reading at this point, thanks for taking the time to read through what is arguably the most complex and detailed blog I’ll probably every write!

For more info, check out the Aspetar youtube channel here (updates coming soon) or follow them on twitter (@AspetarQatar) or search the has tag #Groin2014

Yours in sport

Aspetar

Sam

Walking the “Plank” with core stability prescription

My colleagues are currently taking great pleasure in including “clams” in their exercise programs just to wind me up, so thought it was about time I gave them some new material. (See my thoughts on clams here).

Like “Clams” I have similar opinions on the rational behind including “planks” as part of an exercise prescription for athletes. I will start, and re-iterate later on, that there are times when they are appropriate, providing they have been clinically reasoned. But this is my point, do we throw them into rehab plans / injury prevention plans out of habit or have we individualised the exercise for an athlete?

 

walkingplank

 

What are the benefits?

Performed properly, the Plank is an isometric exercise that crudely speaking, activates the “core”. In doing so, it should encourage a sustained hold of a posterior pelvic tilt and neutral spine for a set duration of time, also working the shoulders and lower limbs to support the torso. Stability provided by the trunk muscles allows for whole body dynamic balance (Anderson & Behm 2005) and as such, these muscles require both strength and endurance.  The deep stabilisers of the lumbar spine display a small cross-sectional area, as such their ability to generate any torque is limited, so their function is to provide local stability and require this endurance component we talked about – perfectly targeted by a well performed plank. In patients with chronic low back pain, isometric exercises had positive effects on increasing the cross-sectional area of the multifidis muscles (Danneels et al 2001).

If we apply the principle of Optimal Loading, then there may be examples of injury where a static exercise is the only way of applying load to an individual. It may be that they are limited with any rotational components of exercise and are pain free in a neutral position. We also understand that isometric contractions can have an analgesic effect on patients (Bernent et al; Huber et al), hence the popularity of adductor squeezes for adductor tendinopathies.

 

..So what is wrong with Planks?

There are undoubtably examples and case studies where the use of a Plank is appropriate for an exercise program. However, un-supervised, there are many compensation patterns that patients can adopt when performing this exercise.

If prescribed as a home exercise, you should have great confidence in the athletes proprioception and ability to self correct. Otherwise you will likely re-enforce the exact reasons why you are treating the athlete in the first place. My biggest gripe with Planks, or Side Planks, or any isometric core exercise is that most people will fixate instead of stabilise. Locking the back into extension (plank) or into side flexion (side plank), or tilting the pelvis anteriorly, or flexing through the thoracic spine are examples of relying on passive structures like ligaments and joint capsules rather than stimulating active structures that should stabilise these joints.

“Don’t replace STABILITY with FIXATION”

Core stability is “the product of motor control and muscular capacity of the lumbo-pelvic-hip complex” (Click here for an excellent core stability review by Paul Gamble). The clue in this quote are the the words “stability” and “motor control”. There are very few examples in sport or even in daily living where we need to hold a whole-body isometric contraction for 1 minute or more. Essentially movements in sports occur in multiple directions. Even in events like Skeleton or Luge, the athletes are reacting to perturbations from the track or adjusting their course via small shoulder or lower limb movements, so I’m struggling to think of the cross-over benefits of a plank into sport. The benefits of a strong lumbopelvic region help transfer ground reaction forces to produce movement and integrate the function of the kinetic chain. Weakness or dysfunction of any link in the chain can increase risk of damage to another structure and as such, any one muscle should not be views a more important to another in terms of lumbopelvic stability (Brown 2006).

 

Note the increased Lumbar lordosis due to extension at the head end of the tiger
Note the increased Lumbar lordosis. Also, the stripy athlete underneath is rotated slightly.

 

“Don’t give me problems, give me solutions”

As I said, in principle there are he benefits to core stability, especially in terms of proprioception and limbo-pelvic dissociation. But for me, the trick is to stimulate the core during movement.

Some simple modifications of the Plank can greatly enhance its suitability for athletes.

 

1) Plank with Wall Taps:

Assume the traditional Plank position, you can regress this with bent knees, similar to a press up regression. Position the athlete about 2ft from a wall, facing the wall. Ask them to reach forwards and tap the wall with alternating arms but maintain stability of the pelvis and trunk.

Although a sagital plane movement, the athlete will be working against a transverse plane to stop the pelvis and lower trunk from rotating to the side of the moving arm.

photo 1[4] photo 2[4]

 

2) Plank with Stacking

Again, in a traditional Plank position, but this time set up a stack of 3 x 2.5kg weight discs on one side of the athlete. Ask them to reach over with their opposite hand, pick up a weight and start stacking on the opposite side. Repeat until all weights have transferred sides, then begin with the other arm. In doing so, instruct the athlete to stay as still and controlled in the hips and lumbar spine as possible, the movement should come from the shoulders only.

By reaching across with one hand, you are de-stabilising the torso. Moving the weight from one side to the other adds a transverse element to the exercises, as well as the challenge of moving with and without a weight.

 

photo 3[3] photo 4[1] photo 5[2]

 

 

3) The Side Plank with arm tucks:

Add an element of upper body rotation whilst stabilising the pelvis. Instruct the athlete to keep their hips up (relative hip abduction of the lower leg), tuck their extended top arm underneath themselves (like putting on a seatbelt) but in doing so, don’t let the pelvic twist. Encouraging dissociation of the pelvis and spine to stop them moving as one column.

 

photo 1[3] photo 2[3]

 

There are so many variations that I haven’t included; you can add cables or theraband and ask the athlete to pull  in different directions maintaining the plank position, you can add movements of the lower limb or think of various ways to de-stabilise the more advanced athletes. For those athletes that just “get it”, there are brilliant variations of the Bear Crawl which may be appropriate – for me, a perfect example of “core stability” (averagely demonstrated below)

– Bear crawl core stability exercise

 

Conclusion

Activities during sport require both static and dynamic strength – however in rehabilitation, these should be dynamic exercise with a pause rather than prolonged holds. At times, we may have to regress back to its most simple form in order to educate the athlete on correct positioning or increase proprioception but there should always be a plan to progress into dynamic core stability, rather than progressing the time holding a plank.

When designing rehab programs, we should always consider the individual – what do they need to cope with for their sport / daily life? What physical capabilities do they have at this moment of their program? Am I challenging them appropriately?

I hope this provokes some thought and discussion, please let us know your experiences and opinions

 

Yours in sport,

 

Sam

 

Pitch-side management in sport: a POV from a bucket & sponge man

bucket and sponge

Although it only forms a small percentage of our working week, the thing most people associate with physio’s working in sport is the match day, and the infamous bucket and sponge! When we watch the TV at the weekends, this is the closest we ever get to seeing a physiotherapist working in professional sport. We don’t see all the early morning meetings, assessments, rehab programs, maintenance treatments etc.

I have to admit, rightly or wrongly, it is the least enjoyable bit of my job. I can’t remember the last time I enjoyed watching a game of sport whilst I was working. Wincing at every tackle, losing track of the score back in my rugby days because I’m too busy counting the players get up from a ruck and constantly running through scenarios and management in my head. However, it is the money end of the job. The games are all about why we do what we do.

I feel bad for physiotherapists trying to break into sport, I’ve been there and done it, working evenings and weekends covering training matches and weekend games and essentially not doing very many of the skills I’ve been taught at University or on the courses I’ve dished out money for. Essentially, you are a first aider. I try and make our part time work at the club as attractive as possible in other ways, with CPD, shadowing, training clinics etc because I know its not the glamour and jazz that people think when working for a pro club.

Like it or lump it, its a huge part of the job. So, what do we do when we run on mid game? Like all aspects of our job, there should be an element of clinical reasoning behind what we do. What are we actually asking? And why do we ask it?

For the sake of keeping the blog concise and not too heavy reading, I’m going to talk about your more routine injuries, which can sometimes create harder decisions. For the management of cardiac, spinal, airway stuff make sure you go onto a proper trauma course to get your qualifications!

 

Stop ball watching

The first habit I had to break when I got into sport was to leave the armchair fan mindset at home. I started off in rugby before moving to football and was lucky to have a brilliant mentor from the start, Clare Deary, who quickly taught me to look away from the ball. Instead your watching the knees and ankles of the forwards in a line out, or checking the prop gets up after the scrum has collapsed. One of the Maddox questions we ask when we check for head injury is “what is the score?” or “who scored last” – in my early days I was asking this without knowing the answer, so if they spoke coherently that was good enough for me.

It is a little bit easier in football because there are typically only two people involved in the tackle, but still don’t get caught up in the game. It important to watch the movement of players, those with known previous injuries or knocks sustained earlier in the game. Are they worsening or improving?

The run on

Ever consciously changed your walk or run because you think people are watching you and all of a sudden you lose all motor patterns and co-ordination? Well when the game stops for an injury, everyone is watching you. If the player is rolling around on the floor screaming in pain, you already know they are conscious and their airways are well maintained, so don’t worry about your 100m sprint time for these cases. Save that for the motionless players.

Approaching the player

The location of the injury will obviously affect your approach, head or spinal injuries aside, I always approach the feet first so the player can see me and I can continuously assess their level of pain, respiratory rate, shock etc. As well as asking “where does it hurt” always make sure you double check other structures, don’t be lured by the pain. Someone landing on their shoulder could always have a neck or head injury.

“You are not trying to diagnose the problem there and then”

When questioning the player, remember its not a consultation in the clinic. You are trying to determine “is it safe for the player to continue” and “will a labouring player cost the team tactically”. If they are missing tackles that they would usually make, or misplacing passes that they normally wouldn’t you firstly run the risk of putting them into scenarios that could cause another injury as well as potentially costing the team.

BHAFC pitchside

Try to determine the irritability of the pain early on. Has it changed since the game stopped to the point of you arriving at the player? If its worsened, despite not moving, that would suggest a rapid inflammatory problem. In which case you really want to be removing the player from the field of play to reduce the risk of secondary injury. If the pain has settled or gone in the time its taken you to consciously jog perfectly across the pitch without falling over, you can probably proceed with some more vigorous testing.

Providing you’ve excluded any fractures, check what the athlete can do with the injured structures ACTIVELY before you do any passive movements. If they are reluctant or guarded with any movements thats enough of an indication for me not to do any passive movements. Why force them through a range that they consciously don’t want to go through?

Walking the green mile

So you’ve establish that they are alive, there are no fractures, they can actively and passively cope with movement, by this point the referee is probably in your ear to make a call quickly. In football, if you have entered the field of play, the player is expected to leave before kindly being invited back on by the ref. This is a good time to continue your assessment as you the leave pitch.

Can the player get themselves up from the floor unaided? Can they weight bear? Can they walk? Does walking ease the pain or make it worse? If they can walk off, assess their ability to jump / hop / run / jog on the sideline.

By this point, you have to go with your gut instinct. If any of the assessment so far has thrown you into doubt, you probably have a good reason to remove that player from the pitch. Consider the structures involved, the presence of any swelling, the compensatory movement patterns that you may have noticed leaving the pitch. I usually ask myself what I would prefer to manage out of two scenarios:

1) Substituting a player that reports to clinic the next day with no signs or symptoms of injury, but is a little p*ssed off because you wouldn’t let them play (or a peeved coach because you’ve taken their best player off the pitch).

2) Allowing a player to go back on that has given you doubts and they break down in their next sprint / action on the pitch. They walk into clinic the next day and you have to tell them they are out for 6-8 weeks.. Your coach is definitely going to be more peeved today than they would have been pitch side, I can assure you.

Vincent Kompany

This isn’t to say you remove every player from the pitch that has an injury. The mechanism of injury will have a big say in determining your thought process. For example you may be more lenient with an impact injury that is smarting a bit compared to a non-contact mechanism of injury.

Key Points:

So, chances are this has made things a lot less clear about pitch side assessment.. Unfortunately there is no algorithm to determine whether a player should continue or come off. Every individual player is different and every injury is just as individual.

  • Is it safe for the player to continue – consider secondary injuries caused by swelling / decreased proprioception, as well as the initial insult worsening.
  • Will a hampered player on the pitch cost the team tactically.
  • Whats the worst that could happen if you remove them from the pitch. This can be made easier if you are working with younger ages that perhaps have a rolling sub system, giving you more time to assess. Also, consider the implication of the game / event. A once in a lifetime shot an olympic medal may be worth the risk of a secondary injury. A community level tournament in kids rugby might make you a bit more conservative.
  • This is only discussing minor knocks and strains. If you are working pitch side and haven’t done or updated your trauma course, make sure you do! Don’t put others health at risk at the same time as your professional credentials. (lubas medical / AREA or RFU are good courses to check out)

I’d be really keen to hear peoples thoughts and experiences with this topic, I’m sure there will be some disagreement with my thinking and methods. Or perhaps people have seen some incidents of players returning to the field when they shouldn’t (I’m thinking the FIFA world cup 2014 with numerous head injuries, but concussion is a separate blog altogether I think).

 

BHAFC

 

As always, Yours in Sport

 

Sam

Exercise Progression & Rehab Programs

A year or so ago, I put on a CPD evening for our part time staff at the football club discussing exercises and the clinical reasoning behind developing a program (needless to say I got talking about the use of clams for a quite a while – clam blog). In this presentation, I started drawing my reasoning process onto powerpoint using some coloured blocks to help visualise the theory that I was trying to describe.

The theoretical model was recently published in Physical Therapy in Sport and I thought I would use this blog to try and discuss it in a less formal way than the writing style allowed in publication.

 

The model (here) is designed to be fluid and adapted to any individual by any level of clinician. Let me quickly introduce the components:

Model
A theoretical model to describe progressions and regressions for exercise rehabilitation (Blanchard & Glasgow 2014)

 

  • The triangular blocks (1) represent the fundamental exercise, the core ingredient that will remain throughout the progression. The arrows running up the side of the triangles represent an ongoing progression throughout the rehab process such as speed, duration, repetition etc. So basically, something that can’t be affected by the stimuli that are added or removed. If you add an unstable surface to an exercise, you can still progress by increasing the duration.
  • The coloured blocks represent a stimulus that will help the exercise progress. This can be one of two things;
  1. Internal – something that the patient has to focus on intrinsically. A decreased base of support for example, where the patient must focus on the balance element of an exercise.
  2. External – the addition of something to the exercise that takes the patients focus away from the movement or action they are performing – adding a ball to a running drill, or a verbal command that initiates a change in direction.

The blocks are interchangeable and can be added / removed at the clinicians discretion.

  • Adding a new block, which will progress the exercise, is accompanied by a regression of the “gradient” on the blue triangle. Creating a step-like progression across the model. As you progress with an internal or external stimulus, its important to bring the difficulty levels back down, so reducing repetitions or speed or duration. This allows the pateints to adjust to the new stimuli without fear of re-injury or task failure. When teaching a child to ride a bike with stabilisers, you don’t take them off and ask them to cycle at the same speed you did with them on. For that reason, you wouldn’t get someone going from 30 reps of a hamstring bridge straight into 30 reps on a single leg bridge as a progression. You would decrease base support and reduce reps to allow adaptation.
  • Adding a “block” doesn’t mean you have to add something to the exercise. The block represents a step up in their progression. So progressing from two legs to single legs is technically “taking away base of support” but is an addition to the ongoing progression.

 

Lets use an example, recently I started designing a program for a teenage footballer with a proximal adductor strain. New to professional football with no history of conditioning.

In the sub-acute stage, once intial pain had settled, we began looking at his movement patterns and stability and noticed a huge imbalance with his left sided control through sagittal and transverse planes compared to his right. He is left footed, so his plant leg (right) is used to supporting his body weight.

His body awareness and “physical literacy” was so poor we had to regress him right back to basics. The following represents a small proportion of a larger exercise program. I’m not usually an advocate of planks in a multidirectional sport like football, but in this case, his single plane control was so poor that I swallowed my pride and began with basic planks.

imagesCA39QJMI

When I say basic, we reverted to short lever planks with the knees on the floor – this was the only was we could get him to control the relationship between his trunk and pelvis. Looking at the model, this short lever plank would be the singular blue triangle at the start (1). We built up the duration of the hold from 30 seconds to 90 seconds over time. This would be the arrow running up the gradient of the triangle.

 

The addition of the first block (2) was to increase the length of the lever so that he now has to hold a traditional plank. In doing so, we dropped from 90s hold back down to 30 seconds and over time, built up to 90s. (These are just arbitrary times, based on no real evidence).

 

The next block we added was a rotational element (3), but to ensure the progression wasn’t too sharp, I removed the long lever and returned to a short lever position. I then asked the player to move a light 1.25kg weight from his left side, with his right hand and place it on his right side. Then with his left hand etc etc. The purpose of this was to introduce a transverse task to a sagittal plane activity – as the arm moves from the ground and across the body, the player has to control the rotation through his trunk and avoid rotation at the pelvis. Instead of duration, we built up repetitions over time.

 

Now that we were confident he could hold a plank, and control rotation in a short lever plank, we could combine the two blocks as the next progression. Now in a long lever plank with a rotational element.

 

The next progression was to add an unstable surface (4). To do this, the player performed a plank with his thighs on a gym ball. This in itself was quite easy so we instantly added a rotational component with an unstable surface, gym ball pelvic rotations (see video here). So now on the model, we have the basic “plank” triangle at the top, a block underneath to symbolise the long lever, another block to symbolise rotational control and a third block to symbolise an unstable surface.

 

“The length of time required by an individual to master a task has

been described as a linear function that begins quite rapidly with

the introduction of a new task and then plateaus or slows over time

as practice continues (Gentile, 1998).”

 

 

This is a very simplistic example of how the model works, but hopefully it demonstrates the fluidity that is intended with it and how the blocks are interchangeable and can work independently or as part of a more complex progression. Every program you write will be individual and the progressions will be different, therefor every model will look different. Some will continue longer than others, some may be shorter than the one I’ve described here. Some will end up with taller columns due to the number of progressions. The width of one column compared to its neighbour may be different size due to the length of time it takes for the patient to master. And so on and so on. If I continued, hopefully I could have ended up with the player doing this:

imagesCANGK06X
But whats the use of that defending a counter attack?

 

Like many conversations I begin or poor jokes I tell, this may be one of those things that only makes sense in my head, but I would love to hear if it makes sense to others – if you think it works and examples of doing so.

 

Yours in Sport

 

Sam

 

 

Podcast Review: Tendons

I wonder if anyone else does this, subscribe to podcast channels and store them on your phone in an attempt to convince yourself that you’re doing CPD, but never get round to listening to them? I’ve also been known to do this with articles, printing them out then cluttering mine & my colleagues desks but never reading them.

Well I decided to catch up on a few podcasts and start listening to them in the car on the way to work. Flicking through the different channels I subscribe to, I saw 2 separate discussions about tendons. So I thought I would listen to both in succession and see what similarities or differences the experts had. These aren’t necessarily the only podcasts to talk about tendons, just 2 I had on my phone:

1) Physioedge #23: Lower Limb Tendinopathies with Dr Peter Malliaris (here)

2) The PhysioMatters Podcast session 6: Achilles Tendons with Seth O’Neil (here)

 

Revision time: 

Before we start, a quick opportunity to revise some key topics discussed below. Figure 1 demonstrates Cook & Purdhams continuum of tendinopathies.

Tendinopathy continuum
Figure 1: Cook & Purdhams Tendinopathy Continuum (click image for article)

 

Difference between Achilles and Patella Tendon:

A particularly interesting theme throughout the podcasts was the difference between Achilles and Patella tendon pathologies. None of the podcasts openly said “lets start addressing different tendons with different management” but they pretty much edged that way.

Malliaris was careful not to align himself with any particular “recipe” for tendon treatment, but did say that if he were to prescribe a protocol, he would use a different one for Achilles than he would Patella tendons. Later in the podcast, he explains his theory on not loading the patella tendon beyond 70 – 80 degrees knee flexion, explaining that there is no benefit to heavy loading into the end range for tendons… except the achilles tendon. This makes sense, if we understand that tendinopathies are a reaction to a combination of tensile and compressive loads. For the patella tendon to be lengthened, with the knee in full flexion, the patella will be acting as a fulcrum on the tendon tissues. However, when loading the achilles in a lengthened position the calcaneous doesn’t cause as much compression on the tendon (excluding Haglund’s deformity).

A quick cameo from a third podcast (BJSM Apophyseal injuries in children and adolescents with Dr Mattheiu Sailly, here) but interestingly discusses different processes between Osgood-Schlatters and Severs disease, with less tendon involvement seen in Severs. Could this paediatric presentation be similar in adult tendinopathies?

 

arnold-draper-squats
Is there a benefit to deep squats with a tendinopathy?

Exercise management:

While on the topic of lengthening tendons and putting them under load, it seems apt to discuss the one exercise method that goes hand in hand with tendons, Eccentrics.

“Eccentrics are not essential – Dr Peter Malliaris”

Malliaris comes across as a big fan of eccentrics. They are a useful method of increasing time under tension (TUT) and applying a heavy load, however they do not have to be a part of every program!

If a patient is unable to perform an isometric exercise, don’t even bother attempting an eccentric exercise as they will lack the quality throughout the movement. Another example would be a program designed for a player in mid-season. In these circumstances, it could be better to provide high load isometric exercises. O’Neill supports this theory for mid-season. While we accept that eccentric exercises will help the tendon, remember that they will also fatigue the muscle and therefor could impact on performance.

It is also important to recognise the stage of tendinopathy (see Figure 1). While a degenerative tendon can be treated quite aggressively in order to increase stiffness, however most athletes are likely to present with a reactive tendinopathy. In these cases, the cellular matrix is generally intact so the management can afford to be less aggressive. In these cases, activity modification to acutely lower the load would be beneficial and combined with isometrics, which Malliaris believes have an analgesic effect.

With any program for tendons, it is important to continuously monitor pain responses. A short duration of pain following activity suggests a stable tendon, however pain for a couple days suggests a very reactive and unstable presentation. O’Neill quotes a theory based on Delayed Onset Muscle Soreness (DOMS) as the characteristics of tendon pain and DOMS are strikingly similar. He explains that fascia seems to be a source of pain as opposed to the contractile tissues. The paratenum contains most of the nerves and the structures here will suffer from the delayed onset soreness. Much like actual DOMS, the tendons respond well to loading. O’Neill uses the analogy of going for a gentle jog when you have DOMS in your legs, and feeling a bit better afterwards.Over time, changes in both central and peripheral sensititsation may cause the heightened peripheral sensitisation we see with chronic loading – hence part of our management is activity modification.

doms

Moving on from mid-season management, Malliaris discusses the off-season and the tendency of athletes to put their feet up for a few weeks after a gruelling season. This would be detrimental to a problematic tendon and as soon as they resume intense pre-season training you will spend the whole pre-season fighting fires with a reactive tendon. Therefore prescribe off-season tendon programs that include jumping, hopping, running drills to maintain control of the tendon.

 

“True tendon problems tend to be aggravated by a Stretch Shortening Cycle – Seth O’Neill”

 

In his exercise programs, Malliaris ensures that the Stretch Shortening Cycle (SSC) is as long as the “slower exercise” phases. However, these do not have to be done in simaltenous blocks. The SSC exercises should be incorporated as early as possible, providing the movement patterns are fluid and symptoms are under control (again, its important to understand and recognise a reactive or degenerative phase tendinopathy).

 

“Patella tendinopathies love intensity and loves load”

 

Summary:

Tendon management remains a complex and daunting task for physiotherapists, yet in an age where we promote individualised management of injuries we still seem keen to follow a “recipe” for tendon management. Both podcasts discuss the importance of treating the individual, with reference given to their demands and tailoring programs to suit them. However, we seem happy to discuss “tendons” as a whole. Hamstring management has its own niche, at the same time we don’t treat all ligament injuries like an ACL. Should we start discussing individual tendons separately? As mentioned at the top, Malliaris changes his stance on loading through range when managing Patella tendons and Achilles tendons. We have only discussed these two tendons, without any reference to the rotator cuff, the hamstring tendons, flexor and extensor complexes in the forearm – all of which have different roles and demands.

What is exciting is the amount of research going into tendons and our understanding is evolving very quickly. Since my short time of being a physio, we have dropped “itis” and introduced “opathy”; eccentrics fell out of favour recently and Alfredssons protocol has been dissected and critiqued to death, yet now, with the support of Malliaris and O’Neill (amongst others) we feel comfortable using eccentrics again, but as part of a bigger program.

I highly recommend listening to the above podcasts and subscribing to their channels, they are a hugely resourceful… resource!

 

Yours in sport

Sam

Case study: “Bulls Eye Lesion”

Every now and then in clinic you come across an injury that doesn’t quite fit “the norm” in terms of its recovery and management. I know every injury should be considered unique and every individual managed differently, but I thought I would share the management of this particular injury as it did prove tricky, we did fail a couple of times but eventually we got it just right.

 

Background:

This case study revolves around an 18 year old central midfielder, skeletally mature (no increase in height throughout the year / evident secondary sexual features) with a regular playing and training history prior to this injury. The presentation started in the autumn, after a complete pre-season and a good few weeks of competitive season underway. The player was in & out of training with a niggling groin / quad but with nothing substantial showing in assessment (the benefit of hindsight would be a very good money earner for any clinician that could harness it and set up a course!)

Towards the end of an under 21 game, the player was visibly struggling with pain at the top of his thigh, unable to sprint or strike a ball but 3 subs had been made, so he was inevitably staying on the pitch. At the end of the game, there was pain on palpation of the proximal rectus femoris and sartorious region. At this stage, there was nothing more to assess – there was no point, we would only aggravate something without actually learning too much more.  He presented the next morning with visible swelling in a small pocket of proximal thigh, palpable crepitus and pain with straight leg raise at 20 degrees.

 

Review of anatomy

The rectus femoris is a long fusiform muscle with TWO proximal attachments. The Direct Head attaches to the AIIS and Indirect Head attaches to the superior ace tabular ridge and the joint capsule. It has a long musculotendinous junction, as such can execute high velocity shortening as well as coping with significant length changes – remember it is a two joint muscle crossing both the hip and knee, with an action like kicking it must cope with hip extension coupled with knee extension during the pull-back of the kick, so both ends of the muscle are undergoing an eccentric load (Figure 1). The muscle structure itself is made up of mostly type II fibres so this high eccentric load makes the muscle quite prone to injury (Mendiguchia et al 2013 source).

Image
Figure 1: Demonstrating the demands on rectus femoris during a kick

 

“Bulls eye lesion”

The term “Bulls eye lesion” was coined by Hughes (1995 source) following the presentation of injury on MRI (Figure 2). The high signal signs around the tear of proximal injuries. Occasionally this causes a pseudocyst, thought to be the serous fluid in the haematoma.

Image
Figure 2: MRI scans highlighting a “Bulls-eye lesion” presentation

Predisposing factors to a proximal tear include fatigue, insufficient warm up and previous injury. From this case, we know that the pain started at the end of the game with the player in a fatigued state, and there was a history of niggling pain on and off for a couple of weeks.

 

Management:

The initial management of this injury was relatively routine, revolving around the POLICE guidelines (see Cryotherapy Blog). By day 2/3 we were addressing pelvic control exercises & posterior chain assessments. By day 5 we could achieve pain free stretching of the hip flexors and were using “Compex” to achieve isometric contractions of the quad while the player did upper body exercises.  After day 7 we were able to begin loading through a pain free range, working on co-contractions and concentric contractions of the quad.

To Speed up, you must be able to slow down – Bill Knowles

In the early-mid stages of rehab, we began working on movement patterns but at a painfully slow speed. Using the Bill Knowles mantra above, we progressed though different ranges of box step ups at slow pace to elicit a co-contraction of quads, hamstring and glutes (Figure 3). We slowly lowered the player through a Bulgarian split squat (Figure 4) to work on stability through range and we did some bridging variations (anti-rotational core) to encourage isometric control of the pelvis (Figure 5 – excuse the size 11 shoes taking up most of the picture!!).

Figure 6: a) Low box step up with knee drive
Figure 3: a) Low box step up with knee drive

 

 

Figure 6: b) medium box step up
Figure 3: b) medium box step up
Figure 6: c) High box step up
Figure 3: c) High box step up

 

 

 

 

 

 

 

 

 

 

 

Figure4: Bulgarian split squat (a & b) with progressive knee drive added later (c)
Figure4: Bulgarian split squat (a & b) with progressive knee drive added later (c)

 

 

 

Figure 5: Single leg bridge (a) with ipsilateral arm fall out (b) and contralateral arm fall out (c)
Figure 5: Single leg bridge (a) with ipsilateral arm fall out (b) and contralateral arm fall out (c)

 

By adding speed to the high box step up, we were able to switch the demand of the quadriceps to an eccentric action as the hip extends from a flexed position and the pelvis rapidly comes forward. We felt confident adding this eccentric component after we had cleared the player at a decent weight using the cable machine and a jacket to work though some deceleration work on the hip and knee (Figure 6).

 

Figure 6: Cable decelerations. a) start position b) end position with 3 sec hold. c to e) Dead slow step backs with weighted cable pulling posteriorly

 

The Bulgarian split squat was advanced by adding a knee drive at the top the squat, taking the back leg from a position of full hip extension through into hip flexion, a rapid concentric action. Following the model of exercise progression and regression (source) we added weight, removed the concentric component and decreased the speed again before building back up in a now weighted position.

The later stage of rehabilitation saw the player undertake more field based conditioning, working under fatigue whilst completing technical drills and building up his range of passing and shooting, all the while maintaining his gym program to supplement his rehab. This late stage rehab combined the expertise of the physiotherapy department, working alongside the strength and conditioning coach to discuss reps and sets of all drills and help periodise the weeks for the player and design the field based conditioning sessions; the sports science department was able to use GPS for all outdoor drills to help monitor load and provide up to date feedback on key information, in this case monitoring the accelerations and decelerations for the player in a fatigued state.

It was important that the stress elicited in this late stage was in line with the rest of the squad mid-competition. Rob Swire and Stijn Vandenbroucke (source) explain the importance of rehab being harder than the team training. This is because we have control over rehab, but no control of training so we must be confident that player won’t break down again in training!

The player returned just under 8 weeks later. He continued his gym program for another 4 weeks after his return to training and (touch wood) has had no recurrence of this injury since.

 

Conclusion

Knowing what I know now, I would be more cautious of this nondescript pain around the proximal thigh. The indirect head runs quite deep and typically presents as a gradual onset. The niggle the player was displaying a few weeks before was probably a worsening of this small tear, that when fatigued and put under a double eccentric load such as kicking or sprinting, was bound to “give” at some point.

I’m sure that reading this back, it seems pretty obvious that there was something wrong with the player initially. Again, another lesson learnt from this relates to the players age. He had not had a soft tissue injury prior to this, so his subjective history was vague and typically teenager-ish. Its important to remember that young players and professionals don’t necessarily understand their own body. If they play things down, its important that we as clinicians double check everything before we clear them and not just rely on their feedback alone.

 

I hope you find my reflections useful

 

Yours in sport

 

Sam