Laboring through a Labral Tear

One skill when working in sport is learning to compromise between your clinical brain (the one that tells you that pathology and injury needs to be managed a certain way) and your performance brain (which tells you that your job is to get athletes back over the “white line” in order to do their job). In an ideal world, we try and appease both of these brains where tissues heal well and performance is optimised with the lowest risk of re-injury. But there are some pathologies that cause these two brains to clash. Ones that can be “managed” until the off season where proper interventions can take place. One such injury that I’ve been trying to learn more about is the mid-season hip labral tear.

labral-tear-img

The purpose of these blogs is to encourage me to read more around certain topics, so in order to help with this I have to say thanks to a few people that have provided me with papers and words of wisdom (Erik Meira, Nigel Tilley & Joe Collins). And thanks to whoever invented Twitter because I probably wouldn’t have this access to knowledge otherwise.

The Problem..

Typically, hip instability injuries are seen in sports with high repetitions of rotational and axial load – football, gymnastics, hockey, tennis, martial arts.. and so on. The hip is widely accepted as being one of the most structurally stable joints in the body, with a deep acetabular socket lined by the labrum, which creates negative pressure within the joint to increase congruency of the femoral head. But what happens when this environment is disrupted? A recent review by Kalisvaart & Safran (here) explain that it takes 60% less force to distract the femoral head from the acetabulum in presence of a labral tear. (This review is great for explaining multiple causes of hip instability, not just labral tears, and also assessment techniques.)

Typically, a lack of stability is replaced by rigidity, where the surrounding soft tissues try to compensate for this increased translation (Shu & safran 2011 here and Boykin et al 2011 here). On assessment of an ongoing labral tear, its quite common to find increased tone or reduced range around adductors and hip flexors. Iliopsoas in particular plays a role to help increase congruency in the hip. (For tips on how to release iliopsoas, please tweet @Adammeakins) – one key thing when managing this condition is not to confuse high tone / over activity with being “too strong”. Chances are its the opposite, it more likely indicates a lack of control. Its not uncommon to see adductor tendinopathies secondary to labral tears as the the load around the joint increases – especially in sports like ice hockey where there is high eccentric load on the adductors (Delmore et al 2014 here).

The Intervention..

So, you’ve diagnosed the tear (clinically and / or radiographically) but other than being irritable, it isn’t affecting the athlete. (Note, not all tears can be managed conservatively, due to pain & some require mid-season surgical intervention – Philippon et al 2010 here). The key premise to your ongoing rehab should be to make the hip joint as robust as possible. Remember, “Stability – not rigidity”. Whats the difference? Can the athlete control the hip or pelvis while performing another task? Or do they lock into a position and rely on passive structures like ligaments and joints.

Consider the demands of the sport. Don’t just fall into the trap of working through what I’d call the “action man ranges” – true anatomical flexion, extension, abduction and adduction. Watch training and competitions of nearly all sports and you’ll rarely see these truly sagittal or coronal movements. They tend to be combinations accompanied by transverse movements of the body in relation to the limb. Make sure this is replicated in your rehab.

Using the three examples above, consider the role of the hip musculature throughout these movements. We don’t always have to replicate abduction in an open chain movement, sometimes its necessary for it to be closed chain and for the body to move relative to the limb. Note how none of these tasks fit the “action man ranges” but all involve some degree of traverse rotation, combined flexion and abduction or extension and adduction etc etc.

man4
No I can’t bench press, but my squats are awful.
Delmore et al (here) and Serner et al 2013 (here) describe some excellent exercise interventions for the adductors here. These include some good low-load isometrics for those early stage reactive tendons – with isometrics appearing to down-regulate pain associated with this acute pathology (Koltyn et al 2007 here; Rio et al 2015 here to name just two resources) . Moving forward through rehab, I’ve discussed exercise progression at length before (here), I’m not dismissing exercises that involve pure flexion, extension etc but as part of a progression, its important to combine these movements. For example, start with a single leg dead lift – can the athlete control their trunk through hip flexion and through extension back to neutral? No? Then here’s a range to work on, using regressions to help improve technique and control. Yes? Then add a rotational component at different ranges of flexion – rotation away from the standing leg will increase the demand on the adductors to control the pelvis in outer ranges. The leg itself hasn’t abducted, but relative to the trunk it is hip abduction.

Remember the bigger picture

Its important not to just focus on the affected structures. For those interested in groin pain, a summary of the 1st world conference on groin pain is here – one key message from that conference was that anatomical attachments are not as discrete as text books make them. Consider what else contributes to the hip and pelvis control. We have mentioned iliopsoas control, but also rectus abdominus. Its not just a beach muscle. Eccentric sit ups can help improve control of the hip flexors, along with some lower load exercises like dead bug regressions – a little imagination or some quick youtube research can turn this one concept into hundreds of different exercises.

We have addressed the issue of controlling abduction through range with the adductors, but also remember to maintain that abduction-adduction ratio with some external rotator & abductor muscle exercises (queue Clam rant here – clams to me are like psoas release to Meakins). Possibly the best piece of advice I was given when doing this research was from Joe Collins, who told me to consider hip joint pathologies like you would a rotator cuff injury in the shoulder. Don’t neglect those smaller, intrinsic muscles around the hip. The exercise below is an anti-rotation exercise working through ranges of hip abduction-adduction.

The athlete is tasked to resist the rotation of the femur into external rotation while slowly moving through hip abduction and back to adduction. (This example is done with a shorter lever to improve control and the bench provides feedback to keep the hips in neutral or extension, rather than the favored flexion). Anti-rotation exercises can also be incorporated into trunk / core control exercises (for any instagrammers – follow ETPI who post some great videos and snaps of golfers working on rotational control). Progress from anti-rotation into control through rotation. Some examples here:

anti-rotation plank with sagittal control

Anti-rotation plank with traverse control. Encourage the athlete to keep the pelvis still when moving the upper limb.

photo 4

Single leg bridge with arm fall outs. Can be regressed to a normal bridge if the athlete lacks lumbo-pelvic control.

Side plank with arm tucks – an example of controlled trunk rotation while isolating the lower body to stay stable. Can be combined with the adductor bridge mentioned in Serners paper to increase load through proximal adductors.

 

These are just some ideas of how to manage a labral tear mid-season; working on rotational control, analgesia via isometrics, improving congruency in the hip joint and overall hip stability via strengthening – Stability, not rigidity! The exercises mentioned here are by no means an exclusive list and I love learning about new drills and ideas, so please share any that you find useful.

 

Your in Sport,

Sam

“I’ve come here for an arguement”

I’ve recently made the move from the clinical environment into academia (despite the occasional clinical fix to satisfy my itchy feet). Part of this move was to set up some new MSc modules at the University of Brighton. The way I wanted this to run was based on me facilitating discussion rather than standing up and banging on about what I would do in different situations – no-one is going to enroll for that! But for this to work, it relies on people feeling comfortable talking about their own practice, something I’ve been surprised by the reluctance in doing so. People seem very uncomfortable disclosing what they do and how they do it.

A while back I read a blog re-tweeted by IFL Sciences (@IFLScience) about how a disagreement is different to an argument. Now rather than me eloquently blurring these definitions and confusing you more, why not allow the genius of  Monty Python to explain.. please watch this brief 3 min video (here).

The original clip goes on a bit longer and in true python fashion, gets stupider. But this clip can translate into our practice. It is perfectly reasonable and healthy to argue. We are not going to learn from each other by accepting that the other guy sat in the room, who has more experience than me, treated his ankle sprain using those exercises, so that’s what I should do.

No! Why? Why those exercises for that individual?

 

There are many roads to Derby:

imageCompletely random destination (just so happened to be one of the cities I can spell). But this image sums up what I think about clinical reasoning. It also demonstrates what I encourage our students, more so post-grad students with clinical experience, to accept when questioned about their practice.

Most of us have at some point ignored the sat-nav, right? Intentionally or not. But it simply re-routes and will eventually lead you to your destination. The same with rehab & treatment. We may all have the same goal & end point, but how we get there is different. The route we chose depends on many factors.

Letting the sat-nav make the decision:

For a relatively less experienced clinician, the situation may be this:

“I’ve only ever been to Derby once, but when I did go, that route worked pretty well for me, so I’m going for it again. Why risk otherwise?”

This is the equivalent of following a protocol or being led by a more experienced clinician. Perfectly legitimate but after a time the question will become, “have you tried other ways?” Yes that’s a pretty direct route, but sometimes it’s not about the speed you get there. An example I can think of was a player with a partial ACL injury that occurred just before christmas. We made the decision to prolong his rehab until the pre-season, despite realistically being able to get him fit for the last 2 games of the season. But there was no advantage to that, instead we were able to focus more on smaller details, enhance his “robustness” and ultimately, we had no re-injuries with him the following season. We decided to take the more scenic route and enjoy the drive. Sometimes, it shouldnt be other people asking why you have done something, but yourself. (Do this internally, arguing with yourself in a cubicle at work could have very different consequences to the intended career development).

Thanks Sat-Nav, but no thanks:

This option comes after you have driven to & from Derby a few times. Or if you insist on keeping it relevant to practice, an exposure to a certain injury with a set population. Experience may tell you that the route suggested by Sat-Nav has an average-speed check for 25 miles, so you may choose one of the alternate routes. This is the same as saying, “I wanted to use squats for his knee rehab, but it aggravates his hip so instead I used dead-lifts.” Someone has asked you why you went that route, the answer is reasoned and justified and neither party needs to be offended. But you have argued your point.

 

An argument is different to a disagreement:

An example of this not being constructive may be:

“I prefer this route because the services have Costa and not Starbucks. I hate Starbucks.” This opinion, without any justification may turn into a disagreement. “I don’t ever use a wobble cushion in my rehab, just don’t believe in them.” A genuine statement that I heard years back when I was studying myself. There was no rationale, every counter argument was met with “Nope. Dont buy it.”

opinions
This is a disagreement. Something I disagree with… Oh, balls.
Conclusion:

An argument doesn’t have to be raised voices or expletives (although people who swear more are shown to be more trustworthy and honest. If you belive that bullshit). It can be someone wanting to develop their own thinking and reasoning, therefore probing your experience – “But WHY did you chose that? (subtext = help me learn!)”

Equally it can be someone pushing you to develop. “You use that exercise for all of your patients.. why?”

I’ve started to do a little presentation at the start of our modules to explain this thinking, I will be asking “why?” A lot, but I don’t want people retreating or getting defensive. Asking Why is not a sign that I disagree with you. arguing is not a sign that I disagree with you. If you feel comfortable with those concepts, you have either done an MSc already, or you are ready to do one! For those not on twitter, firstly – how are you reading this blog? Secondly, get on there. Prime examples of arguments about clinical practice everyday and very quickly, normal jovial exchanges are resumed (I would highly commend Tom Goom (@tomgoom) for this attribute). But also, it is a good place to observe some people misunderstanding an argument and presuming it is a disagreement (I wont name people, don’t want to get in a disagreement).

 

Yours in sport,

Sam

Recovery from concussion – a guest blog by Kate Moores

Following our last blog on concussion, I started talking to Kate Moores via twitter (@KLM390) who had some very intersting experiences and ways of managing concussion. So, I am very pleased to introduce Kate as a guest blogger on the topic of Concussion assessment & management – we have decided to split Kates blog into 2 more manageable parts rather than one super-blog (My contribution may have been to add the occassional picture to the blog).

The original blog (here) discussed generalized pitchside assessment of a concussion, irrelevant of age. However Kate has drawn on her knowledge and experience with young rugby players to highlight in particular, the ongoing assessment of young athletes as well as adults and how it differs. Kate raises some very good points throughout but the point that really made me reflect was the consideration over “return to learn.” Looking back at concussions I’ve managed in academy football, I didn’t properly respect the impact that a day at school may have had on symptom severity or neurocognitive recovery. I was mostly interested in “have you been resting from activity?” I think this blog is an excellent resource for medical professionals, but also for teachers, coaches and parents to consider the impact of this hidden injury.

This is part 2 of Kates guest blog (part 1 here).

 

Recovery

Any player regardless of age should never return to play or training on the same day that they sustain a concussion. So when should they return? The general consensus is that players should be symptom free prior to starting their graded return to play and that youth players should have a 2 week rest period and that youth athletes should have returned to their normal cognitive activities symptom free prior to considering a return to play. It is therefore recommended that cognitive rest is adhered to for 24-48 hours post injury. This means no texting, computer games, loud music and cognitive stress. This can be difficult to get players to adhere to however research has shown that a period of cognitive rest helps to reduce the duration of symptoms.

violentkids
“They said something about no computer games”

The concern with any concussion, but increased concern with children returning to play too quickly is the risk of second impact syndrome, with well publicised cases including the tragic death of Ben Robinson a 14 year old rugby player and more recently Rowan Stringer a Canadian rugby player aged 17. Children are at a higher risk of second impact syndrome (McCory et al 2001) and this risk continues for anything up to 2/3 weeks post initial injury. This is part of the reason why an u19 rugby player can not return to play earlier than 23 days post injury unless they are being managed by a medical doctor who is experienced in managing concussions. Below is the concussion management pathway from the WRU.

WRU

Under this protocol adult athletes would be able to return within a minimum of 19 days after a concussion whereas u19s would not return before 23 days. Both groups need to be symptom free and have had a 2 week rest period prior to return. For the younger age group it does state that they must have returned to learning however there is no guidance as to how this should be staged. The graded return to play protocol consists of 6 stages which gradually increase the level of activity. Stage 2 starts with light aerobic exercise, stage 3 includes light sport specific drills, stage 4 includes more complex drills and resistance training, stage 5 is return to contact with stage 6 being return to normal activity. With children there must be 48 hours in-between stages as opposed to 24 hours with adults.

As mentioned, return to learning protocols are less well documented, there has been some proposed protocols from Oregan and Halted et al (2014) who state that a youth athlete should be able to tolerate 30-40 minutes of light cognitive activity prior to a return to school and that players should be gradually return to normal school activities prior to their graded return to play.

At present youth athletes are part managed as students and part managed as athletes, however there is an emerging theme that return to activity is potentially a far more appropriate method of managing a childs recovery from concussion. We need to do more work to align both protocols. A player may well be “fit” to return to school and therefore deemed “fit” to return to light activity and subsequently drills, however very little research has been done to look at the impact of skill acquisition in a physically challenging environment. Learning your french verbs might be fine (in isolation), gentle jogging may well be fine (in isolation) but there is no denying that trying to do the two in consecutive lessons may well be far more challenging, yet that may well be what we are expecting some of our youth athletes to do. We already know that a concussion can impact players non related injury risk for a year following a single concussion, could it is be impacting on the skill level of players we produce?

Howell et al (2014) (here) explain that traditional concussion severity scales are being abandoned in favour of individualized concussion management with multifaceted evaluation of function. For example, the SCAT3 assesses static balance as part of motor control, however Howell’s study found that up to 2 months post concussion, adolescent athletes display increased centre of mass displacement medial-lateral compared to a matched control group. Could it be that we are clearing people for activity based on a static assessment when in fact dynamic balance may take longer to recover? (a potential study for anyone interested).

Whats up doc?

keep-calm-and-what-s-up-doc
This doesn’t even make sense

Concussion management is further complicated by contradictory advice, youth concussion is not only a sporting issue, but a public health one. If GP’s or A&E do not feel able to confidently manage concussions, how can we expect them to make decisions regarding return to play? I’ve attended numerous times to A&E with players who have been told once you feel better, get back to training. With Scotlands new concussion guides they are starting to address the associated public health concerns around child concussion. It can no longer be deemed as just a sport issue or just a medical issue as the potential long term consequences go beyond these two areas.  With the Scottish guidelines being aimed across sports at a grass roots level it begins to address the disparity between the quality of concussion management across sports and levels. Whether you’re an elite athlete, a weekend warrior or a 15 year old school child you still only have one brain!

 

Prevention

Prevention is better than cure right? Non contact rugby until the age 20? I don’t think so. Considering the reaction to suggesting removing the header from football in youth sport due to concerns around sub concussive events, the suggestion we remove contact from rugby is a no go. However there are lots of benefits to playing a contact sport, from social development, self confidence and the physical benefits from contact so maybe managing the amount of contact sustained in training is one way of combating the risks of concussion and sub concussive events.

How about a helmet, monitors or head guards? Considering the issues within the NFL and concussion with players recently retiring due to concerns around concussion, it would suggest that protective headgear does little for prevention of concussion (think back to blog 1 about mechanisms within the skull). It’s widely accepted that protective headgear has a role to play in prevention of catastrophic head injuries (ie your cycle helmet) however scum caps may well give players a false sense of security which in turn increases the risk of a concussion. RFU guidelines indicate that a scrum cap must be able to compress to a certain thickness and must be made of soft, thin materials – their main purpose is to protect against lacerations and cauliflower ear, they have little to no impact on concussions.

Petr_Čech_Chelsea_vs_AS-Roma_10AUG2013
Following a severe head injury (skull fractures), Peter Cech has become synonomous with this head gear. It provides him with the confidence to play – but what does it do?

Every concussion needs attention. Every team has a coach or a parent watching. But not every child has access to a health care professional pitch side.

Cournoyer & Tripp (2014) (here) interviewed 334 American football players 11 high schools and found that 25% of players had no formal education on concussion. 54% were educated by their parents (but who is educating the parents?!). The following percentages represent who knew about symptoms associated with concussion:

Symptoms Consequences
Headache (97%) Persistent headache (93%)
Dizzyness (93%) Catastrophic (haemorrhage, coma, death) (60%)
Confusion (90%) Early onset dementia (64%)
Loss of Consciousness (80%) – how this is lower than headache is worrying. Early onset Alzheimers (47%)
Nausea / Vomitting (53%) Early onset parkinsons (27%)
Personality change (40%)
Trouble falling asleep (36%)
Becoming more emotional (30%)
Increased anxiety (27%)
Table 1: Frequency of concussion symptoms and consequences identified by American Football playing high school students (Cournoyer & Tripp 2014)

Education is key! Players, parents, coaches, friends, family. Everyone! The IRB has some great online learning for general public, coaches and medical professionals (here). Only by symptoms being reported, assessed and managed can we make an impact on concussion.

 

Kate is a band 6 MSK physiotherapist, having graduated in 2011 from Cardiff Univeristy. Beyond her NHS work, Kate has worked for semi-pro Rugby League teams in Wales, the Wales Rugby League age grade teams and is now in her 3rd season as lead physio for the Newport Gwent Dragons u16 squad.

Concussion Assessment – a guest blog by Kate Moores

Following our last blog on concussion, I started talking to Kate Moores via twitter (@KLM390) who had some very intersting experiences and ways of managing concussion. So, I am very pleased to introduce Kate as a guest blogger on the topic of Concussion assessment & management – we have decided to split Kates blog into 2 more manageable parts rather than one super-blog (My contribution may have been to add the occassional picture to the blog).

The previous blog discussed generalized pitchside assessment of a concussion, irrelevant of age. However Kate has drawn on her knowledge and experience with young rugby players to highlight in particular, the ongoing assessment of young athletes as well as adults and how it differs. Kate raises some very good points throughout but the point that really made me reflect was the consideration over “return to learn.” Looking back at concussions I’ve managed in academy football, I didn’t properly respect the impact that a day at school may have had on symptom severity or neurocognitive recovery. I was mostly interested in “have you been resting from activity?” I think this blog is an excellent resource for medical professionals, but also for teachers, coaches and parents to consider the impact of this hidden injury.

Part 1 (of Blog 2)

outer-child-adult-portraits-photoshop-child-like-cristian-girotto1
Conor McGoldricks first day at school

Children are not just little adults… a phrase commonly heard within healthcare. It’s particularly true when it comes to concussion. Children’s brains are structurally immature due to their rapid development of synapses and decreased levels of myelination, which can leave them more susceptible to the long term consequences of concussion in relation to their education and sporting activities. With adults the focus is usually on return to play, with similar protocols being used in managing youth concussions, albeit in a more protracted time frame.

However a child is physically, cognitively and emotionally different to adults, therefore is it appropriate for these return to play protocols to be used with youth athletes? Youth athletes are still children – still students as well as athletes. It is during these years that children develop & learn knowledge & skills (academic and social), in a similar way these youth athletes need to be learning the tactical knowledge and motor skills they will need for their sport. Shouldn’t “return to learning” be as much the focus in youth athletes as a “return to play” protocol?

“Youth Athletes are still children balancing studies with sports”

Assessment

So, the pitchside decision on management has been made (blog 1) and now the assessment continues in the treatment room

The use of the SCAT3 (here) and Child SCAT3 (age 5-12) (here) have been validated as a baseline test, a sideline assessment and to guide return to play decisions. O’Neil et al 2015 compared the then SCAT2 test against neuropsychological testing. They found that SCAT2 standardised assessment of concussion scores were correlated to poorer neuropsychological testing for memory, attention and impulsivity. However symptom severity scores had poor correlation with those same components. Therefore simply being symptom free may not be a good enough indicator that youth athletes are ready to return to learning or sport.

There has been recent research into the King Devick (K-D) test as another option for the assessment on concussion in children with research being done comparing SCAT scores with K-D testing (Tjarks et al 2013)

One of the benefits of using the KD test is that it has stronger links with the neurocognitive processing which may mean that it has a greater role to play with regard to return to learning as well as return to play. Another benefit is that unlike the SCAT3 tests the KD test does not require a health care professional to administer the test.

braininjury
We educate people about how robust their body is, but should we be more cautious with brain injuries?

At a club with full time staff and consistent exposure to players, the SCAT3 can be useful to compare to pre-injury tests conducted as part of an injury screening protocol. It also helps if you know that person, for some the memory tests are challenging without a concussion so post injury assessment with the SCAT3 may score badly, but is that the person or the injury? It is also important that this assessment is done in their native language. These reasons throw up some complexities if you are working part time for a club, or covering ad hoc fixtures as part of physio-pool system. Its advisable in this instance to get a chaperone in with the athlete to help your assessment – this may be a partner for an adult player or a parent / teacher for a child. A quick conversation with them to say “please just look out for anything odd in what they say or how they say it.”

Beyond the assessment tool, there is evidence now to suggest we should be asking about pre-injury sleep patterns. Sufrinko et al (2015) (here) look prospectively at 348 athletes in middle school, high school and colligate athletes across three different states in America (aged 14-23). At the start of the season the researchers grouped the athletes as those with “sleep difficulties” (trouble falling asleep, sleeping less than normal” and a control group of “no sleeping difficulties”. Following a concussion, assessment was conducted at day 2, day 5-7 and day 10-14 using the Post Concussion Symptom Scale (PCSS) and found that those with pre-injury sleep difficulties had significantly increased symptom severity and decreased neurocognitive function for longer than the control group.

woman-who-cant-sleep-article

Looking in the other direction, Kostyun et al (2014) (here) assessed the quality of sleep after a concussion and its subsequent impact on recovery. Looking at 545 adolescent athletes, the results indicated that sleeping less than 7 hours post-concussion significantly correlated with increased PCSS scores, where as sleeping over 9 hours post injury significantly correlated with worse visual memory, visual motor speed and reaction times. A word of caution with this study, the authors assumed that “normal” sleep was between 7-9 hours – but anyone who has adolescent children, or hasn’t blocked the memory of being an adolescent themselves, knows that sleep duration does increase when you are growing. Saying that, the impact of both of these studies suggests that we should be:

1) Asking about normal sleep patterns prior to injury to help us gauge recovery times (disrupted sleepers may take longer than we originally predict) and;

2) We need to keep monitoring sleep quality along with regular re-assessment as sleeping more than normal may indicate ongoing recovery from concussion.

 

In Part two (here), Kate continues to discuss ongoing assessment and the recovery process.

Kate is a band 6 MSK physiotherapist, having graduated in 2011 from Cardiff Univeristy. Beyond her NHS work, Kate has worked for semi-pro Rugby League teams in Wales, the Wales Rugby League age grade teams and is now in her 3rd season as lead physio for the Newport Gwent Dragons u16 squad.

 

 

 

 

 

 

Rehabbing teenagers can be awkward! – sensorimotor function during adolescence

There is a bit of a buzz phrase in rehab about “individualising programs” and while it is something we wholeheartedly agree with, it is a phrase that is very easy to say and yet very difficult to implement. Especially when you work with a population where said individual changes rapidly through time, like a teenager! It is a common sight on a training pitch to see a star player in their age group suddenly tripping over cones or developing a heavy touch where there was previously effortless control. Side effects of the adolescent growth spurt, where the brain is now controlling a much longer lever. It’s like giving a champion gardener a new set of garden sheers when for the past year they have used little hand-held scissors and asking to them maintain their award-winning standards. (My garden embarrassingly needs some attention and it’s affecting my analogies).

Master-Gardener-Pruner-Secateurs-Shears-Garden-Hand-plants-Shears-trim-cutter-easy-carry-Garden-Tool
The control and precision between these two instruments is influenced by the lever length of the handles…
87453965_XS
…Similar to a rapidly growing femur and tibia which is still being operated by muscles that have length and strength suitable for shorter levers.

 

 

 

 

 

 

 

 

Alongside the performance related issues, there is suggestion that this period of growth may coincide with increased risk of injury (Caine et al 2008). We believe that bone grows quicker than soft tissue, so we are asking a neuromuscular system to control a new, longer lever using prior proprioceptive wiring. Imagine our gardener again, for a long time he has been able to keep his pair of scissors close and controlled, now with his extra long shears the load is further away from his body, his back and shoulders are starting to ache. Not sure what I mean? With one hand hold a pencil to the tip of your nose. Now, with one hand hold a broom handle to your nose. The longer lever is harder to control. **I promise it gets a bit more sciencey than gardening and broom handles. **

Managing these growth spurts is something we have talked about before and recently contributed to a BJSM podcast on the topic (Part 1 & Part 2) and a complimentary BJSM blog about “biobanding” during periods of growth and development (here). This particular blog was inspired by a recent (2015) systematic review looking into exactly which sensorimotor mechanisms are mature or immature at the time of adolescence by Catherine Quatman-Yates and colleagues over in Cincinnati (here). The following is a combination of their summary and our examples of how these findings can influence our rehab programs.

Tailoring the program:

We have so many options for exercise programs, that’s what makes the task of designing them so fun. It challenges our creativity. When working with a teenager with sensorimotor function deficits, let’s call them “Motor Morons” for short, we don’t have to totally re-think our exercise list, just perhaps the way we deliver them. We previously spoke about motor control and motor learning (here) and how our instructions can progress just as our exercises do, but the following relates to children and adolescents in particular.

Consider the stimuli.

Children aged between 14-16 have well-developed visual perception of static objects however their perception of moving objects and visual cues for postural control continue to mature through adolescence. When very young children learn new skills such as standing and walking, they become heavily reliant on visual cues. Quatman-Yates et al suggest that puberty and growth spurts (think gardener with new shears) brings new postural challenges that causes adolescents to regress proprioceptive feedback and increase reliance on visual cues again. From a rehab perspective, we need to consider this as part of our balance and proprioception program. How many of us default to a single leg stand and throwing a tennis ball back & forth from therapist to athlete? For our Motor Moron, this may not be an optimal form of treatment in early stages, where it is commonly used, however it may incredibly beneficial to that athlete in the later stages or as part of ongoing rehab as we try to develop that dynamic perception.

Consider the amount of stimuli involved in an exercise versus what your goal of that exercise is

We should also consider the amount of stimuli we add to an exercise. Postural stability in children is believed to be affected by multiple sensory cues. If we consider that children are more dependent on visual cues than adults are, perhaps our delivery of external stimuli should be tailored also. With a multi directional running drill for example, there is sometimes an element where the athlete is given a decision making task (a red cone in one direction and a yellow cone in another) and they have to react quickly to instructions from the therapist or coach. Rather than shouting instructions like “red cone”, “yellow cone” etc, hold up the coloured cone for the corresponding drill. This way we are utilising this developed visual perception, minimising the number of stimuli and also encouraging the athlete to get their head up and look around rather than looking at their feet.

When to include unilateral exercises:

Within adult populations, it is often considered gold standard to make exercises unilateral as soon as tolerable. If they can deep squat pain free and fully weight bear through the affected side, progress them to pistol squats ASAP, or single leg knee drives. However, young children (pre-pubescent) may struggle with this for a couple of reasons.

ff9c9334b94e73fc944175d7a0c54a04
Difficult enough even for an adult to perform, but uncoupling the actions of the each leg & fine muscle movements to maintain balance are extra challenging for children

Firstly, we need to consider postural adjustments. Where as adults and young adults can adjust their balance with smooth control and multiple, small oscillations, children rely on larger ballistic adjustments. There is also reduced anterior-posterior control in younger athletes which suggests reduced intrinsic ankle control. Put this alongside immature structures and (if working a physio, most probably) an injury then single leg exercise become a progression that may be further down the line than an adult counterpart with the same injury. Instead, consider semi-stable exercises. Support the contralateral leg with a football or a bosu ball – something that is difficult to fixate through but provides enough stability to support the standing leg.

Secondly, we understand that coupled movements are mastered earlier in adolescence, around 12-15 years old but uncoupled movement patterns take longer to develop, 15-18 years old (Largo et al). A good example is watching a young child reach for a full cup of water at the dinner table. It is much easier and more natural for them to reach with both hands than it is with one, as coupled movements are unintended. Rarely do you see a child taking a drink with one hand filling their fork with the other – yet this is something commonly seen with adults as they are able to uncouple and segmentalise. Another example is watching a child dynamically turn, watch how the head, trunk and limbs all turn as a “block”, it is not until further down the line where dynamic movements become more fluid. The argument here is that surely running is an uncoupled movement? Or kicking a football, swinging a tennis racket, pirouetting in ballet – they are all uncoupled, segmental movement patterns that we expect kids to do, and in all they cope with. Correct, but it is usually in rehab programs for kids that we begin to introduce unfamiliar tasks and exercises that they may not have encountered before. Also, we should respect the impact of the injury on proprioception and control. So these are all considerations for starting points in exercise & if a regression is ever required.

For this reason, it is important that exercises are monitored and reviewed regularly. There is no need to hold an athlete back because of their age and making assumptions on motor function because of their age. If they can cope, then progress them. But be mindful of “over-control” where speed and variability of movement are sacrificed in place of accuracy and control (Quatman-Yates et al 2015).

Become a Motor Moron hunter

It is worth spending some time watching training, watching warm ups, watching gym sessions and talking with coaches and S&C’s trying to identify a Motor Moron as soon as possible. It’s important to minimise the chances of an immature sensorimotor mechanism ever meeting a growth spurt. It is when these two things combine that we see kids doing immaculate Mr Bean impressions and therefore increase their risk of injury.Safari-kids

Regularly re-assess your exercise programs. If things arent quite progressing as quickly as they should, it may not be failed healing of an injury, but it may be that we are providing the sensorimotor mechanism with too much information!

 

Yours in sport,

Sam

 

“The Young Athlete” conference 9-10th Oct, Brighton. Here

Hamstring Injury – What are we missing? by Jonny King

We are delighted to introduce a guest blog from Jonny King (@Jonny_King_PT), a sports physiotherapist based at Aspetar, Qatar. Jonny has experience working in professional football in the UK with both Norwich City FC and AFC Bournemouth before he made the big move East to Doha. A prevalent voice on twitter and definetely worth a follow, he provkes some intriguing questions regarding our current understanding of hamstring injuries. We hope you enjoy… P&P

 

Hamstring strain injury (HSI) continues to present as a huge challenge for those of us working within the sport and exercise medicine field – whether that be in a research or clinical setting. Disappointing figures have recently shown that despite an increasing body of publications over recent years and a perceived improvement in understanding of underlying causes, the epidemiology for HSI in elite sport has not changed over the past 10 years (Ekstrand, Hagglund & Walden, 2009) A worrying reality.

Some will argue that WE HAVE improved our understanding and management of hamstring injuries but the evidence base is not being applied effectively into clinical practice. (Bahr, Thornborg, EKstrand, 2015). Others will state that our ability to influence epidemiological data at elite level, has been affected by the evolution of sporting competition including increased physical application. Take professional football for example, both sprint distance (35%) and high intensity running distance (30%) have significantly increased over the past 7 years, alongside a reduction in recovery times as a result of increased fixture congestion (Barnes et al, 2014) These can all be seen as restraints to our drive for better data around HSI.

These are all factors we should appreciate, however are we missing something else?

In brief, we know those at highest risk are those with history of previous strain, weak eccentric strength and those in a fatigued state (Opar, Williams and Shield, 2012). Flexibility, neuromuscular inhibition, biomechanics and H:Q ratios have all been flirted with, but with no real hard conclusion as to their influence on HSI. Identifying those at risk is relatively straight forward these days, given increased accessibility to advanced monitoring technology, helping to identify fatigue or strength reduction. We can thank systems such as GPS and The Nordboard for this. These are for sure all very important considerations as we take a multifactorial approach to injury management and prevention. But, Is there anything else we need to consider?

One area that I feel needs further investigation with regards to HSI is the psychological harmony of the athlete. It may be difficult to account for the primary injury, but are negative beliefs, anxiety and apprehension contributing factors to high rates of re-injury?

jonny blog
More brain training before RTP?

Cognitive functioning and therapy has been discussed at length in the treatment and management of many other musculoskeletal conditions, notably chronic LBP (O’Sullivan 2012) and ACL Reconstruction , with methods such as CBT proving an effective intervention in many cases. I wonder therefore if this needs more consideration when it comes to hamstring injury treatment? Poor psychological readiness has been associated with hamstring strain re-injury (Glazer, 2009) and this would also provide a feasible explanation as to why completion of Carl Askling’s H-Test appears a strong indicator for RTP. Maybe it’s something we are missing, or not considering enough? By more thorough monitoring of anxiety and apprehension can we mitigate ‘previous HSI’ as a risk factor? Food for thought..

What about fatigue and eccentric weakness?

  • We know HSI is more likely to occur towards end of 1st half & throughout the 2nd half (Ekstrand 2011) and that optimal time for full physiological recovery is 72 hours (Dellal et al 2013).

We also know..

  • The widely documented success of the Nordic Curl programme and other eccentric lengthening programmes in reducing HSI in some populations (Arnason, 2008 and Askling 2013).

Throughout the competitive season, the clinical challenge is to address both fatigue and eccentric strength, because for me, the 2 are counterintuitive to one another. You cannot perform regular, effective eccentric strength training without inducing fatigue, therefore it becomes very difficult to address both variables during a season of heavy fixture congestion.

I do wonder if we spend too much time in-season, prescribing injury prevention programmes and exercises. I feel there is a strong argument that we are only exposing our athletes to a greater risk of injury by adding to the overall accumulative training load and fatigue.

jonny blog 2
Are we doing too much?

Why are we not reducing hamstring strain injuries?

Are we trying too hard in search for that holy grail of HSI prevention? Do we just need to ease off these guys?

Ultimately, and realistically I think there has to be a fine balance between the 2 . Windows of opportunity, such as the international breaks and pre-season, should be fully utilized for specific strength training and the remainder of the season used to ensure players have adequate time to recover and prepare physiologically for upcoming competition.

 

No answers here, just some food for thought. Enjoy your sport =)

 

Jonny

Concussion – Pitchside management

concussion-pix
I can see the problem here – half of his face is missing

A while back, we wrote a blog about pitchside management (here) and I was very careful not to discuss concussion at the time as its potentially a topic that warrants a couple of blogs on it own (blog #2 will discuss post concussion management).

Since writing that blog, there have been a number of high-profile head injuries in the football World Cup and more recently in the IRB 6 Nations. It’s very easy to assess such scenarios from the armchair with the benefits of replays – but what these examples did do was spark positive discussions about a topic that unfortunately is glossed over within sport (not necessarily sports medicine – a few tweeters in particular that discuss the topic a bit: @PhysioRichmond, @Sophie_T_SEM, @SportsDocSkye , @KLM390).

george-north-head-knock2-
George Norths contenious concussion in 2015 Six Nations

What is concussion?

The RFU describes concussion as:

a functional disturbance of the brain without any associated structural pathology (as visible using current scanning technology) that results from forces transmitted to the brain (either directly or indirectly). It is generally considered part of the spectrum of traumatic brain injury (TBI)

One issue we have as clinicians is a poorly defined summary of what concussion is – where does an acute bang to the head that causes some dizziness become “concussion”? The first thing to clarify is that not all head injuries are concussions, and not all concussions result from head injuries (explained later). In fact, terming concussion a “traumatic brain injury” (TBI) may be more accurate – I am certainly not a fan of the word “mild” when discussing brain injuries.

We also have no gold standard for assessing concussion. In the updated version of the Sports Concussion Assessment Tool version 3 (SCAT3), the authors describe (here) clinical diagnosis as a combination of symptoms, physical signs and impaired cognitive function. To diagnose a concussion, some of the following symptoms should be present (via the CDC):

Thinking/
Remembering
TBI symptoms physical icon.gifPhysical TBI symptoms emotional icon.gifEmotional/
Mood
TBI symptoms sleep icon.gifSleep
Difficulty thinking clearly HeadacheFuzzy or blurry vision Irritability Sleeping more than usual
Feeling slowed down Nausea or vomiting
(early on)Dizziness
Sadness Sleep less than usual
Difficulty concentrating Sensitivity to noise or lightBalance problems More emotional Trouble falling asleep
Difficulty remembering new information Feeling tired, having no energy Nervousness or anxiety

Perhaps one reason concussion isn’t taken as seriously as it should is the lack of external signs. In some cases, it is a hidden injury. Classed as a TBI, there is undoubtably going to be swelling associated with a concussion. A swollen knee or ankle looks pretty drastic to players and coaches, its easy to point at and compare to the other limb and easy to explain why you are removing someone from the field of play. But here we are talking about something contained within the skull. There are also elements of a concussion that we won’t see in the 2 minutes we have on the pitch – such as disrupted sleep, anxiety, drastic mood swings (continued management discussed in forthcoming blog). So now we start to see some of the difficulties with assessing a head injury at pitchside..

Saying the C-Word

concussion-teen
“He’ll be alright”

So, following a clash of heads on the pitch, we rush on to survey the scene. As well as the adrenaline associated with getting on the pitch and thinking quickly about what to do & say, you probably have a referee, a handful of players, spectators and the coaching staff all asking whats going on. Lets assume there is no associated neck injury (essential to check following any head injury!!), no abrasions or lacerations – just this hidden injury within the skull. How many of those symptoms listed above should be present before you diagnose a concussion? And if they aren’t present now, how might continued swelling affect them in 1 minute, 10 minutes, 30 minutes? Some signs and symptoms may not evolve for hours (McCrory et al). The two voices in your head are saying:

“If this players gets better in a minute and I take them off, the players and coaches are going to crucify me – they’ll probably never tell me the truth about their injuries again because they think I’ll sub them every time.. Should I let them carry on for a bit?”

And

“Actually, I Couldnt care less what they think, even if they are star player and we lose, we are talking about this persons brain!”

I believe things are about to change, if they havent already, but previously just saying the word concussion in rugby ruled a player out for a minimum of 3 weeks. Two concussions in one season for the same player would rule them out for the remainder of the season. Designed to safeguard the player and the medical team, this does add a bit more pressure to on-pitch assessments.

Making the Call

There are huge benefits to being pitchside to witness injuries, especially when the injury may result in the loss of memory of said injury. Observing the mechanism of injury can give you great indicator as to potential problems. But remember, not all concussions are caused by impact injuries to the head. McCrory et al (here) define concussion as:

“An injury caused by a direct blow to the head, face, neck, or somewhere else on the body with an impulsive force transmitted to the head, resulting in a graded set of clinical symptoms”

The population you work with is going to be key here. Reduced neck musculature and head control could make younger athletes, or slighter built adult athletes, more susceptible to non-head impact concussions.

It is personal opinion, but I would say some symptoms are more severe than others. For example, ANY loss of consciousness, even seconds and the player should come straight off. We are talking about an event that is significant enough to stop the brain working. Poor terminology, but imagine the fear and anxiety if you told an athlete their back didn’t work – I’m pretty sure they would be asking for your help then (**semantic police disclaimer – I don’t recommend ever telling someone “something doesn’t work”**).

Secondly, vomiting is a pretty clear indicator of a concussion. Although the mechanisms aren’t quite clear, it’s believed to be a combination of individual intrinsic factors (Brown et al 2000), which means the absence of vomiting unfortunately doesn’t rule a concussion out, but the presence of it definitely makes the diagnosis more likely.

Finally, the third thing I would always look for, or listen for, is what they are saying and how they are saying it. If it is incoherent or in any way bizarre (depends on your athlete, you have a pre-existing level of weird that you may want to work from) then that’s a pretty good sign of a brain injury. Most people are familiar with asking your short-term memory questions with a head injury, but equally important to what they aren’t saying, is what they are saying – self-control, judgement & decision-making occurs in the frontal lobe and is one of the first skills to diminish following a brain injury. With a limb injury you may be inclined to listen to their judgement and monitor performance & function briefly, but head injuries are one example where the athlete shouldn’t be involved in the immediate decision-making process. As mentioned above, this may be an invisible injury and it may be tricky to demonstrate to a concussed athlete that they are concussed.

maxresdefault
Alvaro Pereria out cold in Brazil world cup
a.espncdn.com
Later, he overruled his own doctor to continue playing.

Conclusion

I think this is pretty straight forward. There is no game or event that is bigger than a persons life. Admittedly, I have never worked at a World Cup or a 6 Nations event but the level of sport you work in shouldnt matter either. This is an injury that could have serious implications on quality of life, regardless of the quality of sport. If there is any doubt in your mind about a potential concussion, they need to come off.

Look back at the RFU description of concussion – “a functional disturbance of the brain…” We are talking about THE BRAIN. It controls EVERYTHING. How a person feels, thinks, moves, sees… Do I need to go on? There is some seriously concerning data coming out from America about long-term effects of repeated concussion in the NFL with regards to depression, substance abuse and even suicide. Just this year, NFL line backer Chris Brland, aged 24, retired from the game due to fear of the effects from repeated concussions (here).

There are numerous pressures on therapists pitchside to make quick calls regarding injuries. It is pleasing to see some discussions in rugby and football about providing more time for head injury assessment, similar to a blood sub, but I would say that if there is enough doubt to request this extra time to monitor, is that sufficient doubt to suspect a traumatic brain injury?

Brian-ODriscoll-ruled-out-001
BOD ruled out of 3rd Lions test in 2009 with concussion

There is a whole other blog (or three) to discuss different assessment tools and post-concussion management – how it differs between adults and younger athletes, so bear with us – we’re already working on that.

For those that want to know more – The 2015 ACPSEM conference has Dr Jonathan Hansen (here) (AKA @SportsDocSkye) discussing concussion management in sport – dont miss it!

 

Yours in sport,

Sam