#Groin2014 – a not so brief summary

Any one familiar with twitter may have seen the recent hash tag for the 1st World Conference on goring pain in athletes (#Groin2014). This conference in Doha, Qatar was brilliantly orchestrated by Adam Weir (@AdamWeirSports) and his team at Aspetar. Run over three days and cram packed with information, I’m going to try and summarise the points that I found most interesting and thought provoking – please be aware these are my interpretations of what other speakers said and do not serve justice to the quality of the talks and presentations.

Yes, I was the only delegate in shorts and flip-flops

I have themed the findings into 3 main categories: Epidemiology; Adductor related pathologies & Femoral Acetabular Impingement (FAI) (Not an exclusive list of things discussed at the conference)


What quickly became clear through the presenters was that even in 2014, we categorise injuries far too broadly. Consider the structures involved in the “Groin” and its no wonder why this area of the body see’s such huge injury occurrences.  Also, our terminology needs to be more accurate. Per Holmich (@PerHolmich) brilliantly said “Pubalgia is as specific as saying Kneealgia” we need to be more concise with our terms if we are going to understand the pathologies and management better.

That said, a lot of the current research into epidemiology does categories pathologies into hip /groin. So we have to go with the stats that are in front of us. And what are they…


Of 110 multi-sport athletes assessed by Andreas Serner (@aserner), 76% of these injuries occurred in football-code sports. Markus Walden’s (@MarkusWalden) systematic review of 12 papers found that “Groin injuries” accounted for 9-18% of all injuries in mens football, with greater time loss of injury seen in tournament football compared to the regular season. Is this because of better monitoring at club level? Where medical teams know the players in a detail that international staff can’t due to limited exposure to players? Or as Walden says, is it due to the acute nature of injuries in tournaments due to reduced recovery and increased fatigue?

Both Walden and John Orchard (@DrJohnOrchard) found a greater incidence of groin injuries in men compared to women. It was suggested that the anatomical variance in womens hips puts them at more risk of lateral hip and knee pain rather than groin pain. The inguinal canal deficiency is also greater in men than womens.

Adductor Related Pathologies

Walden reports that 64% of groin related injuries are adductor related. This was supported by Serners paper with adductor longus being the most frequently injured of the adductor muscles. The picture below demonstrates Serners findings that 1/4 of all diagnosed injuries are negative on imaging, and that clinical presentations of rectus femoris & iliopsoas especially, often appear different on imaging.

Treat the player, not the scan!

Looking at risk factors for adductor pathologies, Jackie Whittaker (@jwhittak_physio) highlighted the basic but fundamental fact that previous injury is the biggest risk factor for future adductor pathology. Secondary to this, isolated adductor strength is a good indicator – ability to perform a squat is not! (Useful for those collating Injury Screening tools). Building on from Whittaker, Andrea Mosler (@AndreaBMosler) agreed that reduced strength coupled with positive pain on 45 degree adductor squeeze highlighted strong evidence for future groin pathology. Mosler summarised the following battery of tests for risk factors with adductor related groin pain:

Adductor strength – Strong evidence that low scores indicate future groin pain

BKFO (Bent knee fall out) – strong evidence that less flexible patients have greater risk of pathology

IR (Internal Rotation) – moderate evidence between decreased IR range and pathology

ER (External Rotation) in neutral – NO evidence to link decreased range and pathology. (Despite this lack of evidence, Geoff Verrall (@GeoffreyVerrall) does highlight a loss of ER in sport due tightening of the pubofemroal ligament and shortening of the adductors – improving this ER will help with force dissipation – so assessment is still valid!)

Eamonn Delahunt (@EamonnDelahunt) presented his research findings of squeeze assessments and groin pathologies, concluding that 45 degree squeeze has the highest sEMG and strength values (mmHg) of the 3 traditional squeeze measures. Contradictory to Moslers & Delahunts assessment of the adductors, Kristian Thorborg (@KThorborg) favoured long lever assessment when assessing for strength and pain. Pain provocation tests at a 0-degree squeeze is the best assessment to “rule adductor longus in.” While Delahunt drew his conclusions from a small population of gaelic footballers over a 6 month review period, Thorborg presented around 12 of his studies looking into the assessment of groin related pathologies. What is worth considering, is what structures are being affected when testing at these different ranges. As you’ll see below, it is a very complex and integrated part of the body.

Anthony Schache emphasised the importance of understanding the anatomy of the groin, in particular the soft tissue attachments. “Antomoy books provide discrete anatomy definitions which implies discrete anatomy – but this is not true.” The image below highlights the intimate attachments of surrounding structures in the groin.

Cadaveric groin anatomy – shows distinct LACK of “discrete anatomy” especially insertions


Per Holmich was keen to build further on these assessments as part of a clinical diagnosis, saying that adductor pain replicated with stress tests PLUS pain on palpation of the adductor origin (must be “the patients pain”) indicates that the adductors are the main driver of pain – any one identifying factor on its own is not enough to indicate a diagnosis. But, consider what Schache said about the anatomy – we would need to ensure that our palpation skills were incredibly accurate. You can see how being a centimetre out when palpating the pubic bone for the adductor origin could be the difference between adductor longus (AL) or gracilis, or rectus abdominus. For this reason, its important to take your time when palpating this area, although it can be uncomfortable for both practitioner and patient, but confidently & slowly working your way around the attachments could help improve your diagnosis.

Of significant interest regarding the adductors is the difference in anatomy. Stephanie Woodley describes the intramuscular tendon of AL as being 23% of the femur length, compared to 11% of femur length for adductor brevis. Also significant is the decreased vascularity of AL, less than that of brevis and both of these are less than that of gracilis. If we now consider that AL is the most commonly injured structure in the groin, could this be a cause of injury rates? At any rate, it is certainly a consideration worth knowing for healing times.


Both Damian Griffin and Joanne Kemp (@JoanneLKemp) were keen to clarify the terminology of FAI. FAI relates to the pain caused by a CAM or Pincer lesion,  CAM or pincer lesions don’t necessarily mean FAI.

“Athletes will undergo increased loads and greater demands on joints (ROM) than the general public, therefore impingements that are asymptomatic with ADL’s become FAI in sporting population” Damian Griffin.

Rintje Agricola describes an increased risk of FAI in males, especially in a sporting population but most interestingly reports that FAI is not prevalent in the non-athletes – therefore are we looking at a preventable pathology?

Increased loading over growth plate stimulates CAM deformity
Increased loading over growth plate stimulates CAM deformity

We believe now that CAM deformities develop around 12-13 years old (Agricola and Kemp), the same age that IGF1, key for bone development, peaks in adolescent males. ER and flexion increase weight bearing through the femoral neck and lateral femoral head, around the growth plate, so increased physical activity at this stage of development will promote bony changes on these lateral surfaces. The population most at risk would athletes specialising in one sport, say football academies, where they increase their training volume and intensities as they physically mature.

If we understand this to be true, should we now seriously start to consider activity modification for children in this stage of development? Obviously we would need to understand stages and rate of physical maturity for individuals, and then there is a bigger debate of getting coaches on side for this change in loading.

The presence of a CAM deformity may not cause FAI in all individuals. However Schache gives an example where a CAM lesion may actually provide a false positive, or exacerbate existing symptoms. If we assessing IR range through a flexed position, a CAM lesion may act as a lever on the pubic synthesis and increase stress in this area. So a detailed assessment and knowledge of individual hip morphology would help us differentiate between an impingement or pubic synthesis stress.

Staying with this thought process of structural limitations through range, Morritz Tannast explained benefits of assessing rotation in neutral and through flexion. In a neutral hip, with legs hanging off the end of the plinth, we can assess the posterior wall of the hip joint. Extra-articular impingement in this position is most likely to come from the lesser trochanter and the ischium. In prone, we can assess the degree of ante torsion of the femoral head by looking at total range of rotation, so:

– Low antetorision would present as decreased IR and increased ER

– High antetorsion would therefore present as increased IR and decreased ER

Assessing through slight flexion, abduction and ER any extra articular impingement will be from the ischium up against the greater trochanter and our old friend, a CAM lesion. Griffin advocates the use of control and low speed with impingement tests, encouraging clinicians to explore the contact surface of the acetabular ring.

So far through this summary, we have stayed very insular with our assessment and anatomy. Kemp encourages the clinician to consider the control of the trunk with hip pathology. An increased anterior pelvic tile will equal and increased acetabular retroversion and a decreased IR at 90 hip flexion. Sometimes, it may not be the presence of a CAM deformity reducing that range, so on this final point summarising the hip and groin, I wold encourage people to still consider the bigger picture of the patient and what role the hip / groin plays in a combination of movement patterns and dysfunctions.

Taking this forward

There is a great deal, and I mean a huge amount, that I have not discussed. Secondary cleft signs of the pubic synthesis or surgical interventions for hip & groin pathology for example. But one topic I have not discussed that is probably glaringly obvious is the treatment and management.

In terms of exercise prescription, I think this will be led by your clinical abilities to diagnose the pathology (Remember Serners findings above, don’t just treat the scan!) Hopefully this summary will encourage to you read more of the presenters own works, or maybe it has re-enforced your understanding of what is a complex structure in the body. Essentially management of this area is much like any other in the body, we identify complications or restrictions and we address them. Usually this is a global approach, looking at the whole kinetic chain  – remembering that this conference focused on a very key, but isolated area of that chain.

If you are still reading at this point, thanks for taking the time to read through what is arguably the most complex and detailed blog I’ll probably every write!

For more info, check out the Aspetar youtube channel here (updates coming soon) or follow them on twitter (@AspetarQatar) or search the has tag #Groin2014

Yours in sport



Walking the “Plank” with core stability prescription

My colleagues are currently taking great pleasure in including “clams” in their exercise programs just to wind me up, so thought it was about time I gave them some new material. (See my thoughts on clams here).

Like “Clams” I have similar opinions on the rational behind including “planks” as part of an exercise prescription for athletes. I will start, and re-iterate later on, that there are times when they are appropriate, providing they have been clinically reasoned. But this is my point, do we throw them into rehab plans / injury prevention plans out of habit or have we individualised the exercise for an athlete?




What are the benefits?

Performed properly, the Plank is an isometric exercise that crudely speaking, activates the “core”. In doing so, it should encourage a sustained hold of a posterior pelvic tilt and neutral spine for a set duration of time, also working the shoulders and lower limbs to support the torso. Stability provided by the trunk muscles allows for whole body dynamic balance (Anderson & Behm 2005) and as such, these muscles require both strength and endurance.  The deep stabilisers of the lumbar spine display a small cross-sectional area, as such their ability to generate any torque is limited, so their function is to provide local stability and require this endurance component we talked about – perfectly targeted by a well performed plank. In patients with chronic low back pain, isometric exercises had positive effects on increasing the cross-sectional area of the multifidis muscles (Danneels et al 2001).

If we apply the principle of Optimal Loading, then there may be examples of injury where a static exercise is the only way of applying load to an individual. It may be that they are limited with any rotational components of exercise and are pain free in a neutral position. We also understand that isometric contractions can have an analgesic effect on patients (Bernent et al; Huber et al), hence the popularity of adductor squeezes for adductor tendinopathies.


..So what is wrong with Planks?

There are undoubtably examples and case studies where the use of a Plank is appropriate for an exercise program. However, un-supervised, there are many compensation patterns that patients can adopt when performing this exercise.

If prescribed as a home exercise, you should have great confidence in the athletes proprioception and ability to self correct. Otherwise you will likely re-enforce the exact reasons why you are treating the athlete in the first place. My biggest gripe with Planks, or Side Planks, or any isometric core exercise is that most people will fixate instead of stabilise. Locking the back into extension (plank) or into side flexion (side plank), or tilting the pelvis anteriorly, or flexing through the thoracic spine are examples of relying on passive structures like ligaments and joint capsules rather than stimulating active structures that should stabilise these joints.

“Don’t replace STABILITY with FIXATION”

Core stability is “the product of motor control and muscular capacity of the lumbo-pelvic-hip complex” (Click here for an excellent core stability review by Paul Gamble). The clue in this quote are the the words “stability” and “motor control”. There are very few examples in sport or even in daily living where we need to hold a whole-body isometric contraction for 1 minute or more. Essentially movements in sports occur in multiple directions. Even in events like Skeleton or Luge, the athletes are reacting to perturbations from the track or adjusting their course via small shoulder or lower limb movements, so I’m struggling to think of the cross-over benefits of a plank into sport. The benefits of a strong lumbopelvic region help transfer ground reaction forces to produce movement and integrate the function of the kinetic chain. Weakness or dysfunction of any link in the chain can increase risk of damage to another structure and as such, any one muscle should not be views a more important to another in terms of lumbopelvic stability (Brown 2006).


Note the increased Lumbar lordosis due to extension at the head end of the tiger
Note the increased Lumbar lordosis. Also, the stripy athlete underneath is rotated slightly.


“Don’t give me problems, give me solutions”

As I said, in principle there are he benefits to core stability, especially in terms of proprioception and limbo-pelvic dissociation. But for me, the trick is to stimulate the core during movement.

Some simple modifications of the Plank can greatly enhance its suitability for athletes.


1) Plank with Wall Taps:

Assume the traditional Plank position, you can regress this with bent knees, similar to a press up regression. Position the athlete about 2ft from a wall, facing the wall. Ask them to reach forwards and tap the wall with alternating arms but maintain stability of the pelvis and trunk.

Although a sagital plane movement, the athlete will be working against a transverse plane to stop the pelvis and lower trunk from rotating to the side of the moving arm.

photo 1[4] photo 2[4]


2) Plank with Stacking

Again, in a traditional Plank position, but this time set up a stack of 3 x 2.5kg weight discs on one side of the athlete. Ask them to reach over with their opposite hand, pick up a weight and start stacking on the opposite side. Repeat until all weights have transferred sides, then begin with the other arm. In doing so, instruct the athlete to stay as still and controlled in the hips and lumbar spine as possible, the movement should come from the shoulders only.

By reaching across with one hand, you are de-stabilising the torso. Moving the weight from one side to the other adds a transverse element to the exercises, as well as the challenge of moving with and without a weight.


photo 3[3] photo 4[1] photo 5[2]



3) The Side Plank with arm tucks:

Add an element of upper body rotation whilst stabilising the pelvis. Instruct the athlete to keep their hips up (relative hip abduction of the lower leg), tuck their extended top arm underneath themselves (like putting on a seatbelt) but in doing so, don’t let the pelvic twist. Encouraging dissociation of the pelvis and spine to stop them moving as one column.


photo 1[3] photo 2[3]


There are so many variations that I haven’t included; you can add cables or theraband and ask the athlete to pull  in different directions maintaining the plank position, you can add movements of the lower limb or think of various ways to de-stabilise the more advanced athletes. For those athletes that just “get it”, there are brilliant variations of the Bear Crawl which may be appropriate – for me, a perfect example of “core stability” (averagely demonstrated below)

– Bear crawl core stability exercise



Activities during sport require both static and dynamic strength – however in rehabilitation, these should be dynamic exercise with a pause rather than prolonged holds. At times, we may have to regress back to its most simple form in order to educate the athlete on correct positioning or increase proprioception but there should always be a plan to progress into dynamic core stability, rather than progressing the time holding a plank.

When designing rehab programs, we should always consider the individual – what do they need to cope with for their sport / daily life? What physical capabilities do they have at this moment of their program? Am I challenging them appropriately?

I hope this provokes some thought and discussion, please let us know your experiences and opinions


Yours in sport,




Don’t clam up over lower limb exercises



I regularly find myself debating this exercise with students, new staff, and part-time staff all from different clinical backgrounds and I always find myself asking them – “Why is that patient doing clams?”

For those unsure of the terminology, the “Clam” exercise is designed to activate the external rotators of the hip, performed in side lying with limited pelvic / lumbar rotation.

Firstly I’d like to make it clear that this exercise does have a place in some rehab plans and I am not adverse to including it as part of a program where necessary – but I strongly disagree with it being a mainstay in rehabilitation plans. Purely going from anecdotal evidence, people seem to use clams as a way of increasing endurance of the glutes, particularly glute med. Often prescribing high sets and reps to target the endurance component of the muscles. Previous literature has suggested that Maximum Voluntary Contraction (MVC) of greater the 50% is required to produce any strength gains in an individual muscle (Atha 1981). Figure 1 below demonstrates the EMG activation of glute med during 2 clam exercises, at 30 and 60 degrees hip flexion. Its clear from this study that the activation of glute med is below the required level to achieve any strength gains.

Glute med (if it ever did work in isolation, which I don’t think it does) would concentrically abduct the hip, isometrically stabilise the pelvis and lower limb, and eccentrically control adduction and internal rotation. The best types of activity to stimulate these actions are going to be weight bearing exercises (Figure 1); (Krause et al 2009).

There is evidence to suggest that the posterior portion of glute med is deactivated with any degree of hip flexion, with the bias for primary movement coming from gluteus maximus (Delp et al 1999). This said, Di Stefano et al’s (2009) study produced similar glute med activation at 30 and 60 degrees hip flexion. Either way, my argument is the same – clams probably aren’t working the structures you intend to target.

Reference: DiStefano 2009 here

Clinical Reasoning

My question to clinicians who regularly use clams is always “why?”. What is the purpose of this exercise? At the moment, I work with an elite athletic population. How often in their training and/or competition do they have to externally rotate a flexed hip in an open chain from a side lying position? Never. Even in standing, I can only think of them opening up their hip to control a ball in mid-air but then they are mainly using hip flexors to activate that movement – something we strictly instruct them not to do with a clam. So now that we can’t think of a transferable example for this exercise, I would ask “why are we doing high reps and sets of an exercise we don’t need to do?”

Problem solving

We have already said that the best exercises for glute med activation are weight bearing exercises and the reason for that is exactly the reason why we shouldn’t try and isolate glute med… in weight bearing, it will work as one part of a complex and brilliant kinetic chain. This was highlighted in a very interesting study recently by Kendall et al (2013) who used a nerve block on the superior gluteal nerve and then performed the Trendelmberg test. Even with a neural block to the gluteal muscles, patients maintained pelvic alignment through the step test, highlighting that in isolation, the glutes alone do not support the pelvis.

One of my preferred, early stage exercises to improve hip control / stability is a single leg isometric movement (figure 2).

Figure 2: Single leg isometric glutes
Figure 2: Single leg isometric flutes (brilliantly demonstrated by @riarottner)

The patient is instructed to rest the contralateral leg against the wall for balance only. All of the body weight should be through the standing leg. Explain to the patient that their foot is superglued to the floor, but you want them to rotate their thigh out (encourage external rotation). There should be no movement from the upper body, bum should be “tucked in” with text book posture and they should hold this contraction for 10s, repeat 10 times. I promise, it will burn your glutes towards the end. Try this yourself and pay particular attention to what else happens further down the chain. You’ll see activation of the VMO and the medial arch will raise as tibialis posterior activates too. A brilliant example of the kinetic chain in action.

“Providing the patient is able to single leg balance, any exercise targeting hip control should be done unilaterally”

Now, there are examples in the patient populations where this is not an appropriate exercise. For example, early stage ACL injuries due to the torsion this creates through the femur and tibia. Instead I would adapt the exercise to something that we were all taught very early on in our physiotherapy degree – a simple small box step, placing one foot from the floor onto a step and back onto the floor – where the standing leg is the working leg. If you are strict enough with posture and lumbo-pelvic control, this is great early stage exercise for the glutes and easily progressed into a full step up, step downs, lateral steps, greater step heights etc. (For exercise progression, please see my shameless plug for my recent Model of Exercise Progression). Kendalls (2013) paper that we mentioned earlier, supports this simple trendelmberg exercise for patients with marked hip abductor weakness. Krause et al (2009) found an increased activation of glute med with single leg exercises compared to double leg stance, so providing the patient is able to single leg balance, any exercise targeting hip control should be done unilaterally.

For the non-weight bearing patients there is reasoning to perform these open chain exercises. While we have said we may not be increasing strength, we know that there is some activation occurring within the glutes so we limit an atrophy and maintain neuromuscular activation while the patient is NWB. Refer back to figure 1- the top exercise for glute med EMG is straight leg hip abduction so even with these NWB patients there are more appropriate alternatives to the clam.


Two of the core elements of physiotherapy is the ability to clinically reason and to provide effective exercise prescription. I would encourage people who regularly use any exercise, not just clams, as part of their mainstay exercise protocol to consider exactly why they are using them. I personally don’t think there are many examples where the clam is an appropriate exercise for sports medicine populations. The exception being NWB patients who are unable to control long lever exercises like single leg hip abduction. Therefore, there is an argument that the clam may quickly become an extinct creature.


Yours in sport