A vision of high performance sport

 

I recently embarked on a professional development tour of North America, sparked by the inevitable malaise that comes from years and years of working in pro sports. I love my job and my profession and am incredibly lucky and grateful to have worked where I have, but the long hours and short recovery time don’t always allow for that enthusiasm to be re-ignited, to go out and learn from others and see what the world looks like. So, when Oliver Finlay, the concierge of sport, offered me the opportunity of a lifetime to visit Vancouver, Seattle, Las Vegas and LA to see some of the best high performance operators in the world, I jumped at the chance. 

2A5425B4-0B1A-4E67-9193-E668C4CCC45A
(Top row, left to right): Jeremy Sheppard & Elliot Canton; Andrew Small. (Middle row, left to right): Amy Arundale; Graham Betchart; Nick Pituk. (Bottom row, left to right): Scott Savor; Teena Murray; Per Lundstam.

 

This is a reflection of four key themes that I took from the meetings; Strategy, impact of change, ego and mental performance.

C635F6B4-A4C2-4EF6-A776-C34C86BBB5CE
(Top row, left to right): Marc Cleary & Brian Moore; Nicole Surdyka. (Middle row, left to right): Lindsay Shaffer; Sean Muldoon. (Bottom row, left to right): Amber Rowel & Damian Roden; Patrick Ward.

Out of respect for those that provided their time, I would like to acknowledge each and every one of those that met with us but also provide some anonymity & confidentiality to how they operate and what they are working towards. So, for most parts this is a general reflection and synthesis of information. With the odd tip of the cap where appropriate to the exceptional individual work that is being done. So, my thanks go to:

  • Jeremy Sheppard (Canadian Sports Institute)
  • Elliot Canton (Canadian Sports Institute)
  • Andrew Small (Milwaukee Bucks)
  • Per Lundstam (Redbull)
  • Teena Murray (Sacramento Kings)
  • Graham Betchart (NBA mental skills coach)
  • Scott Savor (NBA mental skills coach)
  • Duncan French (UFC)
  • Amy Arundale (Brooklyn Nets)
  • Nick Pituck (Cirque du Soleil)
  • Katie Perlsweig (Cirque du Soleil)
  • Brian Moore (Orreco bioanalytics)
  • Marc Cleary (Orreco bioanalytics)
  • Nicole Surdyka
  • Lindsay Shaffer (Headspace)
  • Sean Muldoon (Seattle Sounders)
  • Amber Rowell (Seattle Sounders
  • Damian Roden (Seattle Sounders)
  • Patrick Ward (Seattle Seahawks)
  • Sam Ramsden (Seattle Seahawks) 

STRATEGY 

We met with a range of disciplines with a range of experience in their current roles; athletic trainers, strength coaches, physio’s, performance directors, mental skills coaches; Ranging from 1 year on the job to entering their 10th year. But we didn’t meet one person that wasn’t aware of their process, where they were going and what challenges they faced. 

The environments that had a tangible feeling of sustainability all had clear and concise visions. Strategies of where they are now and where they need to be. Sounds obvious right? But it’s an easy thing to say and a different thing to do. 

“Build it and they will come”

Graham gave a great analogy that serves this thought well; who will be more successful, the person who tries to chase after the rabbit or the person who plants a field of carrots and sits quietly? The standout environments for me that planted fields upon fields of carrots were the Canadian Sports Institute and Redbull. Because their population within extreme sports have lived a life ungoverned by rules, they are the rule breakers that don’t conform to structure. So applying a regiment schedule that you may see in American Football just wouldn’t work. In very different ways, both organisations planted the carrots and waited. And there was a comfort in this superficial lack of structure because underpinning it were clear objectives and a vision that sat on a level that was detached from the athletes. 

27E12271-0164-4B37-981B-B9CA94FE4D76

Away from working with the athletes, there were processes about building, developing and sustaining a performance team that again was underpinned by clear strategy and purposeful recruitment. Seattle Seahawks, under the wisdom of Sam Ramsden, stood out as one of the departments that had perhaps been on the longest journey and was now at a point that he was truly comfortable but still had a 3 year progression plan ahead of them. Consistently, performance directors spoke of the time that this took, between 5-7 years was the consensus to establish a harmonious and collaborative performance team. 

dca9d50d-e36a-4042-9ed8-2e8b0a2559c4.jpeg

At the other end of the journey were practitioners finishing their first year in the job, reflecting on the change around them, the change they wanted to create and how their environment was coping with the change that came with their employment.

CHANGE

Nobody likes change. Unless you are Oliver Finlay and you are studying change management as your PhD. Whether you are trying to implement change or you are a product of the change, it comes with uncertainty and requires an ability to balance and gradually influence. It was interesting to see that everyone had a different approach to this. 

Some people were energised by the positive approach to change at their organisation, whereas others clearly demonstrated signs of “change fatigue” where year on year something operational or structural had occurred and was creating a demotivated approach to change

“what’s the point in getting on board with this when it will probably change again next year” (paraphrased quote amalgamated from a few different conversations). 

The introduction of new staff was a major component of this association with change. And it was interesting to hear how new staff are integrated at different organisations. Take Cirque du Soleil, an environment where every single person has a very different personality and background, from dance, gymnastics, trampoline to military, NFL or academia. As part of the circus family, each individual was celebrated for who they are, no one had to conform. Equally, we were told that a new member of staff is almost expected to know nothing, with a robust and consistent induction period to each show. 

At one end of the scale, we met people who agreed that their philosophy in year one of a new role was to sit and be quiet, to observe and speak when spoken to. To essentially use the year to “be accepted”. At the other end we met people with vast depths of experience that could identify early on where changes needed to occur and how to improve, picking that “low hanging fruit” but on reflection, felt that perhaps too much change at once had been detrimental. 

c9fc9982-ebae-4e2d-85e1-66a4f6091d4e

And this made me reflect on my experiences, having been a contractor that “fills in” or on a 1 year fixed term contract and how that compares to being part of a project on a permanent contract. Going into any role now, I would know what questions to ask of those above me. What are the expectations? Knowing it’s a short term contract means you know to do the quick fixes, but if its permanent, what do year one expectations look like compared to year 3? What changes are necessary and what can be a longer term project. I am forever grateful to a conversation I once had with Dr Ben Rosenblatt who outlined a matrix for change, looking to “traffic light” interventions and opportunities that:

1) would be immediately important

2) would be easy to implement 

3) had greatest magnitude of effect?

Outlining these things and revisiting them regularly helps you to gauge the need for change. Herein lies a thin line, and what side of that line you fall depends on ego.

EGO

An overriding message from the trip was “there is no room in performance departments for ego”.

What you implement, what you decide to change, who you decide to invest your energies in, can not be driven by ego. And here was the deepest level of reflection for me. I would like to think I am not known as having a massive ego, but when I spoke to people much wiser than I, I realised I did have one that perhaps was enough to influence my practice over the years. 

Another gem from Graham, as soon as you feel you have to justify your job, you are onto a loss. The athlete has reached this level without you and, more often than not, will remain there in spite of you. Supporting them doesn’t come from enforcing your beliefs on them, it also doesn’t come from running monitoring systems that serve a purpose to publish your data. The best organisations we visited again had a structure in place to safeguard this. Whether it was a layered approach to implementing a new monitoring system, robustly scrutinised at each level to ask “does this serve the athlete?” Or whether it was an end of season audit to review practice and ask “what have we done and why did we do it?” Both approaches served the purpose to ask, “Am I satisfying myself and my ego or does it benefit the program & the athlete.”

B01EE9AA-F364-4DBE-AC6F-C3EC9BC133B9

Now, this is a two sided relationship. To have that ability to sit and be patient, to not feel the need to prove your worth, to know where the low hanging fruit is with immediate impact whilst planning the longer term vision, it all requires support from above and around you. Again, those organisations stood out. The Seahawks, UFC under Duncan French, Canadian Sports Institute among many others, all had people at the helm who knew the happiness and development of their staff was crucial to the long term success of the organisation and their athletes. 

MENTAL PERFORMANCE

We all know sport is tough, rarely does it come with the glamour or success that we dreamed before entering the profession. Instead it is long hours, time away from family, missed weddings, flying visits to hotels and long delays in airport waiting rooms. It also has a lot more adversity than it has championship medals. I personally took great motivation from Pep Guardiola’s advice to John Stones: “In football, there are more mistakes than success and you lose more than you win” 

From a medical perspective, I think this can sometimes be overlooked. Its is easy to chase success; a successful rehab, a low re-injury rate, a correct diagnosis after initial assessment, even thinking outside of your department and focusing on team selection and competition results. But focusing on chasing success can mean you aren’t learning from the mistakes.

If the staff are feeling the pinch from the characteristics of sport listed above, or perhaps an injury that doesn’t go to plan, it can be compounded by the fact that the majority of interactions through the day have negative connotations; “I am in pain” “I can’t do this” “why does this hurt”…. no one sticks their head in the treatment room to tell how amazing they feel. 

If you don’t like hearing these questions then you shouldn’t be a health professional. But my point is, if the staff are looking after the players and absorbing or buffering their negativity, who is looking after the staff? 

This was a recurring question we asked of performance directors and of the mental skills coaches we met with. Headspace, in a move that just oozed with everything Headspace stands for, blocks out two 15 minute spaces in the day to ensure staff get some alone time. No meetings can be booked in these times, they are free to meditate and group meditations are encouraged, but equally they can just sit in a quiet room and breath for a small period of time in a busy day. This made me think about its application in sport. Why not? 15 minutes should be achievable, right?

91D3D40B-5398-4CFE-BFEA-08FD45AA1772

Without having a rigid meditation structure like Headspace, there was acknowledgement of the need to decompress at UFC, where work can intensify over a period of weeks. Duncan made it clear that when the opportunity comes, he encourages staff to go down a gear, take more time and be sensible about energy expenditure. Knowing that they can ramp it up again when the next time comes.  

If you have the opportunity to employ a mental skills coach, or perhaps you are one and you are part of a new team, how are you going to integrate and operate? Oliver himself was able to draw on reflections from a previous role where a proactive approach to build mental skills actually highlighted an unforeseen problem; if you have one mental skills coach, or sports psychologist, and they look after both staff and players, what does the player think when they open up about how they feel and then watch as the sports psych walks straight into the coaching office? One of the mental skills coaches we met actually withdrew themselves from a full time position and intentionally became part time, so that they didn’t become too familiar or part of the furniture, giving themselves some distance become a more intermittent but effective presence. 

Conclusion

I guess the overriding message through this reflection is the importance of a clear vision. Something that is easily articulated, frequently visible and actually lived. This then provides the foundation for who you employ, how they integrate into the team, what’s expected of individuals and the department and ultimately feeds performance of staff and athletes. 

I would be interested to hear people’s opinions or reflections on experiences of change, how you coped, how you were managed and supported. What will you do given the opportunity to influence a department?

Yours in sport,

Sam

B7FE83AB-89FF-4BD4-ACA3-1B1F204232FC

 

Outcome measures: An observation and a reflection

Sports science and strength & conditioning practice is built on a foundation of identifying a problem, testing the problem, applying an intervention and then re-testing to ensure progression. Athletes will buy into fitness testing, injury prevention and subsequent high performance behaviours if they are given the impression that their coach and medical team know what they are doing and things are done with a purpose (Kristiansen and Larsson, 2017). This begs the question whether coaches can justify and clinically reason their battery of performance tests.

When applying a performance measure, understanding of the underlying kinematics is essential to understand the validity of the test to the desired outcome. The OptoJumptm is a valid tool in assessing a reactive strength via  drop jump (Healy et al., 2016) however what components of the jump is the coach wishing to address? The validity of the tool is the not the same as the validity of the test. For example, reactive strength index (RSI) can be influenced by a reduced contact time (stretch shortening cycle via the musculotendinous unit) or via total jump height (power output throughout the lower limb and nervous system) or a combination of both (Healy et al., 2017). Understanding these mechanisms may influence the instructional bias of technique given by the coach in order to test what is desired.

With complexities over a test like an RSI to something seemingly obvious like a jump, testing for broader components of fitness and multiple movement patterns is much more difficult.

The Yo-Yo intermittent recovery test (IRT) is reported to be a valid measure of fitness and correlates to match performance in football (Krustrup et al., 2003). However, this is an example of a fitness capacity test and in fact correlates to fitness capacity in a match scenario. In field based team sports, there are a large number of variables and complex interactions that all contribute towards “performance” as an outcome (Currell and Jeukendrup, 2008). Krustrup’s conclusion was based on correlated Yo-Yo IRT results to high speed running in a game (>15km.h-1) with a strong correlation (r=0.58). Overlooking the methodological accuracy of this (pre-GPS, using VHS locomotive assessment retrospectively), the correlation is between two differing metrics. Where the high speed running was recorded over 90 minutes of varying intensities and periods of effort (12 players across 18 different games), the Yo-Yo IRT covered 1.7km in a mean time of 14.7mins with incremental increases in pace dictated externally. For a test to be considered a valid indicator of performance, it should meet the same metabolic demands as the sporting activity (Currell and Jeukendrup, 2008). The Krustrup paper does not make this comparison, instead analysing physiological markers from rest to exhaustion during the Yo-Yo IRT, not exhaustion markers in comparison to game data.

Perhaps semantics, but in fact there should be differential terminology to distinguish “fitness performance” from “athletic” or “sporting performance.” It should be considered that sporting performance is influenced by a large number of uncontrollable and non-modifiable factors that would make any comparison of validity and reliability to outcome measures unfair. Essentially, recreating a competitive environment is near impossible. This raises the question whether we are exercising just to improve test scores or, closing the loop and relating exercises to performance? Does raising the envelope of one, consequently improve the other? Something that we should not only be asking ourselves, but a question we could come to expect from coaches and athletes a like.

Oriam

Does the research answer this?

It has been suggested that stronger athletes produce faster sprint time, quicker change of direction speeds and higher vertical jump scores when compared to weaker athletes of the same sport (Thomas et al., 2016). Squat jump (r = -0.70 to -0.71) and counter movement jump (r = -0.60 to -0.71) demonstrate strong correlations to change of direction speed (Thomas et al., 2016). Peak force during isometric mid thigh pull was significantly correlated to 5m sprint time (p <0.05) however this correlation was only moderate (r = -0.49). But again, does this correlation transfer into performance if the testing protocol doesn’t accurately mirror sporting performance?

Sprint times over 40m have been shown to decrease following an acute bout of heavy loaded squats, hypothesised to be due to post activation potentiation (Mcbride et al., 2005). Higher squat strength scores also correlate with sprint times over 0-30m (r= 0.94, p=0.001) and jump height (r = 0.78, p=0.02) (Wisløff et al., 2004). Importantly, we know sprint performance tests have demonstrated construct validity to the physiological requirements of a competitive field based game (soccer) (Rampinini et al., 2007), which is ultimately what we are aiming to do; relating performance testing to physiological and metabolic markers from a given sport.

The addition of a jump squat exercise into a training program may help improve 1RM squat and 1RM power cleans (Hoffman et al., 2005). So perhaps yes, there is a perpetuating loop between exercise, tests and performance but the link between them all may not be tangible or direct.

But how do we translate all of these statistics and data sets this to a non-scientific population, as a lot of our athletes are? I’ve developed the following analogy to try and help with this.

 

Solar system analogy:

If we consider that “athletic performance” is the main focus of any intervention, much like the sun at the centre of the solar system. This is the bright light that everything revolves around; media, finance, fan base and support and so on. It could be argued that any intervention we have as coaches will never truly replicate “athletic performance” but should be influenced by it. This influence works both ways, positively and negatively. For example, if we maximally test an athlete before a competition, this will likely have a negative impact on “athletic performance”. Conversely, if we were able to collect data that informed a training program to improve athletic performance, despite not actually replicating “athletic performance” it would (hopefully) have a positive impact. For example, a football game is determined by so many uncontrollable variables that can not be replicated in a gym, but we might identify that a player needs to improve their 5m sprint time which in turn, will benefit performance.

Figure 1 solar system
Figure 1: An analogy depicting the relationship between “athletic performance” and controlled interventions / measures. The skill of the coach is identifying which outcome measure or intervention is going to have the greatest influence on athletic performance.

Let’s consider our potential interventions to be orbiting the sun (Figure 1). There is an interaction between the planets and the sun via gravity but they do not have a direct overlap, where the planets do not collide with the sun just as an outcome measure does not truly match sporting performance. We know that larger planets have a greater influence, so as coaches, we are trying to affect the level of positive interaction with “athletic performance”, the gravitational interaction. By influencing links between exercise intervention and outcome measures, we can affect the size of these planets. In turn, this will have a greater interaction with the centre of our solar system, “athletic performance” (Figure 2). Much like the universe, there will be many different solar systems just as there are different sporting codes and contexts, so the skill lies in identifying the most influential planets in your solar system.

figure 2 solar system
Figure 2: The impact of enhancing an intervention or measure on sporting performance, in this case there has been a greater focus and development of the blue “planet” which has changed the interaction with the “athletic performance”

 

A clinical reflection:

For long term injuries, I utilise a continuum to guide return to play (train / play / perform), often these stages are guided by outcome measures linked to goals and aims for stages of rehab. Typically these tests are scheduled in advanced and often follow a planned “de-loading” micro-cycle. This helps with continuity and, as much as you can in sport, standardisation of the test.

A recent case study found me questioning my judgement and to a degree, wondering if my intrigue and curiosity about my rehab plan drove me to test out of sync with the schedule, instead of doing the test for the athletes benefit.

Following a good period of return to train, the proposed testing date previously scheduled clashed with a squad training session. Observational assessment suggested the athlete was coping well with the demands of training and it seemed counter-intuitive to pull them out of training to undertake some tests. A few weeks later, a gap in the daily schedule presented an opportunity to re-test. The test scores were down compared to the previous month, most likely because the athlete had trained in the morning and trained the 4 out of the last 5 days in some capacity. In previous tests, the athlete had come off of a de-load week and tested the day after a day off.

The result:

The athlete began to question their ability and availability to train. They were visibly knocked in their confidence given a drop in scores, despite me being able to rationalise why this could be. Having had the opportunity to feed my own interest and try to prove to myself that a rehab program had worked, the outcome was much worse. I threatened the confidence of a long term injury returning to training, potentially adding doubt and hesitation to their game and I did not get the results I was expecting.

On reflection, given their time out through the season so far, I should have stuck to protocol and tested on the scheduled day (one training session was not going to increase their chances of availability).. or, not tested at all. Instead, i shoe-horned some testing into an already busy schedule. What did I expect given the current level of fatigue?!

Image result for reflection

Previous results had reached a satisfactory level to return to train and I was now chasing the final few percentages available. To give them confidence? Probably not, as they were training and enjoying the return to train. So perhaps it was just to give myself confidence. An interesting lesson learnt, mostly about myself.

 

Yours in sport,

Sam

Viewing balance exercises with eyes closed

For a long time, I have questioned prescribing balance exercises with eyes closed to athletes in sport. Regular readers of the blog will know that I continuously explore the clinical reasoning behind treatments and interventions but have a particular interest in exercise prescription. I have to admit that single leg balance with eyes closed is an example of exercise prescription that just doesn’t make sense to me, how many athletes close their eyes to perform a sport related task? I’m regularly seeing discussions online about “what is functional?” and most of the debates are based around semantics without much weight behind them but provide a good opportunity for people to have a little disagreement about something. To avoid getting into a debate about “functional” I thought it best to better understand the concepts and demands behind “balance” to see if I can answer the “why” behind balance exercise progressions.

SLB
Now stay like that for 1 minute or until another player throws a ball at your face
One argument for closing eyes during balance exercises is to remove the visual stimulus and encourage the athlete to challenge vestibular and proprioceptive senses. Remove one thing and make others compensate for this deficit. In a study of track athletes, sway velocity (cm/s) increased two-fold when athletes closed their eyes during a static balance test (here) but the only significant finding in the study was the difference in centre of pressure displacement (cm) between non-dominant and dominant limb across the medial-lateral plane. So, no difference between male and female athletes and no difference between “eyes open” and “eyes closed”.

So how does this explain the increase in sway velocity? The sway velocity is the area covered in both the anterior-posterior and medial-lateral planes of the centre of pressure per second, indicating speed of correction. The fact that the displacement between “eyes open” and “eyes closed” was not meaningful suggests that the demand on the fine motor correction increases. A decent argument to include “eyes closed” in a balance program, if that is the aim.

Static balance in dynamic sports

Compared to dynamic balance tests, static tests do not allow re-positioning of the centre of mass within the base of support, so the athlete becomes more reliant on smaller corrections. Different sporting populations have demonstrated varying abilities in static and dynamic balance skills, with gymnasts outperforming in static balance but soccer players demonstrating better dynamic balance (here).

This may seem obvious given the control on the balance beam vs changing direction to avoid an opponent. But actually, perhaps where the argument becomes more broad and complex.

As with any exercise selection, it needs to be appropriate to the aims of the rehabilitation program and the demands of the sport, taking into consideration open and closed skills and linking these to fixed gaze drills vs dynamic gaze drills.

Have we gazed over “skill”?

In a given skill, experts can recognise which cues are relevant and avoid information overload (Martell & Vickers 2004). Below is a slide from my presentation “3 sets of when?” It explains the concept that following any injury, the athletes ability to perform a given skill returns (temporarily) to novice level.

skill level injury

Take a skill like walking. Immediately after an ankle sprain, your ability to perform that skill at an expert level is decreased. A skill that has taken years to perfect, to become automatic, now becomes a task which requires concentration. Thankfully, the return to expert level doesnt take years (hopefully!) and this is where our exercise selection becomes crucial to optimally load and sufficiently challenge. We can’t presume that the pre-injury skill level is the same post-injury. We should also consider experience of the balance task specifically. I can think of experiences where athletes are standing on one leg on a Bosu throwing a reaction ball at a 45 degree trampoline. “Oh you’re no good at that are you… we need to address your balance”

I’ve digressed slightly from single leg balance with eyes closed… and actually I still haven’t discussed “gaze control”.

off on a tangent

Gaze control links specifically to experience of a task. Comparing those skilled at orienteering to non-skilled (here) demonstrated an increased ability of the orienteering folk (what do you call people that go/do orienteering?!) to employ a wide focus of attention and to shift efficiently within a peripheral field. The test very cleverly measured gaze control to flashing images with varying degrees of relevant and irrelevant information. What is interesting from this study was that the control group where physically active and proficient in other sports, but the “skill” advantage lay with the orienteering-iers. [shrugs and thinks “sounds right”].

I did not know that about balance!…

Elite athletes have heightened spatial awareness and processing capabilities vs their non-elite counterparts, where gaze control is cool and calm, with long duration of fixation of specific locations. This results in better body positioning end efficient limb actions (here). What better example than ballet. When comparing professional dancers to controls walking along a thin taped line, it was observed that experienced dancers focus far into space, delivering effortless and accurate movements where as controls looked down and focused on the line, moving with greater speed and less control (here). Dancers shift their neural control from somatosensory inputs and to an increased use of visual feedback, via peripheral fields and focused gaze control. Interestingly, sub-maximal exercise has been shown to increase visual attentional performance (posh words for reaction time) and a decreased time need to zoom focus of attention (here). This is useful for prescription considerations.

This efficiency has been demonstrated in other studies also, where the addition of a 4-week balance training program to Physical Education classes in school resulted in increased CMJ, Squat Jump and Leg Extension Strength (here). A time period that can’t be associated with physiological adaptations to muscles (regardless of time, they did balance exercises!) and even when a balance training program has been compared to a plyometric strength program (here). It is thought that improved centre of pressure is linked to spinal and supraspinal adaptations, due to high inter-muscular activation and co-ordination.

My question for any budding researchers out there… if there is a spinal level involvement here, can we utilise the contralateral limb at the very early stages of injury to improve balance on the injured side?

Finally, I get to my argument… balance is the output. Balance and proprioception are different entities, as are gaze strategies and balance. But they may all be interlinked via “skill.”

In researching this blog, I’ve certainly become more accepting of “eyes closed” as an addition to balance programs. But also think I’ve gained more clarity on appropriate prescriptions and the suitable progressions for individuals.

Perhaps “eyes closed” is not a progression, but a starting point!

Immediately post injury, we are looking to internalise feedback (intrinsic) and focus on local, fine movements. There are plenty of regressions within “eyes closed” balance that we can make the athlete safe from secondary injury. Graded progressions from static to dynamic, trying to keep the demands appropriate to the skill required to return the athlete to “expert”.

From here, our progressions should not be the removal of a visual stimulus, but instead optimising and enhancing gaze control:

  • Focus on a stationary target –> moving target
  • Head still –> head moving (repeat stationary and moving target progressions within this)
  • Static balance –> dynamic balance (repeat progressions above)

Essentially, we progress through from intrinsic cues to extrinsic cues, where gradually the athlete is thinking less and less about the mechanics of balance and more about skill execution and performance. We know that gaze control components improve with sub-maximal exercise, so our ordering of our program can reflect this. It is commonplace for balance exercises to be at the beginning of the program, but if balance is our primary aim for rehabilitation, perhaps it should be later in the schedule.

I don’t think this is too dissimilar to how most people prescribe exercises, but for me at least it has given me a better thought process into the “why” which ultimately should make rehabilitation programming more effective and efficient and therefore more elite.

Yours in sport,

Sam

Concussion Assessment – a guest blog by Kate Moores

Following our last blog on concussion, I started talking to Kate Moores via twitter (@KLM390) who had some very intersting experiences and ways of managing concussion. So, I am very pleased to introduce Kate as a guest blogger on the topic of Concussion assessment & management – we have decided to split Kates blog into 2 more manageable parts rather than one super-blog (My contribution may have been to add the occassional picture to the blog).

The previous blog discussed generalized pitchside assessment of a concussion, irrelevant of age. However Kate has drawn on her knowledge and experience with young rugby players to highlight in particular, the ongoing assessment of young athletes as well as adults and how it differs. Kate raises some very good points throughout but the point that really made me reflect was the consideration over “return to learn.” Looking back at concussions I’ve managed in academy football, I didn’t properly respect the impact that a day at school may have had on symptom severity or neurocognitive recovery. I was mostly interested in “have you been resting from activity?” I think this blog is an excellent resource for medical professionals, but also for teachers, coaches and parents to consider the impact of this hidden injury.

Part 1 (of Blog 2)

outer-child-adult-portraits-photoshop-child-like-cristian-girotto1
Conor McGoldricks first day at school

Children are not just little adults… a phrase commonly heard within healthcare. It’s particularly true when it comes to concussion. Children’s brains are structurally immature due to their rapid development of synapses and decreased levels of myelination, which can leave them more susceptible to the long term consequences of concussion in relation to their education and sporting activities. With adults the focus is usually on return to play, with similar protocols being used in managing youth concussions, albeit in a more protracted time frame.

However a child is physically, cognitively and emotionally different to adults, therefore is it appropriate for these return to play protocols to be used with youth athletes? Youth athletes are still children – still students as well as athletes. It is during these years that children develop & learn knowledge & skills (academic and social), in a similar way these youth athletes need to be learning the tactical knowledge and motor skills they will need for their sport. Shouldn’t “return to learning” be as much the focus in youth athletes as a “return to play” protocol?

“Youth Athletes are still children balancing studies with sports”

Assessment

So, the pitchside decision on management has been made (blog 1) and now the assessment continues in the treatment room

The use of the SCAT3 (here) and Child SCAT3 (age 5-12) (here) have been validated as a baseline test, a sideline assessment and to guide return to play decisions. O’Neil et al 2015 compared the then SCAT2 test against neuropsychological testing. They found that SCAT2 standardised assessment of concussion scores were correlated to poorer neuropsychological testing for memory, attention and impulsivity. However symptom severity scores had poor correlation with those same components. Therefore simply being symptom free may not be a good enough indicator that youth athletes are ready to return to learning or sport.

There has been recent research into the King Devick (K-D) test as another option for the assessment on concussion in children with research being done comparing SCAT scores with K-D testing (Tjarks et al 2013)

One of the benefits of using the KD test is that it has stronger links with the neurocognitive processing which may mean that it has a greater role to play with regard to return to learning as well as return to play. Another benefit is that unlike the SCAT3 tests the KD test does not require a health care professional to administer the test.

braininjury
We educate people about how robust their body is, but should we be more cautious with brain injuries?

At a club with full time staff and consistent exposure to players, the SCAT3 can be useful to compare to pre-injury tests conducted as part of an injury screening protocol. It also helps if you know that person, for some the memory tests are challenging without a concussion so post injury assessment with the SCAT3 may score badly, but is that the person or the injury? It is also important that this assessment is done in their native language. These reasons throw up some complexities if you are working part time for a club, or covering ad hoc fixtures as part of physio-pool system. Its advisable in this instance to get a chaperone in with the athlete to help your assessment – this may be a partner for an adult player or a parent / teacher for a child. A quick conversation with them to say “please just look out for anything odd in what they say or how they say it.”

Beyond the assessment tool, there is evidence now to suggest we should be asking about pre-injury sleep patterns. Sufrinko et al (2015) (here) look prospectively at 348 athletes in middle school, high school and colligate athletes across three different states in America (aged 14-23). At the start of the season the researchers grouped the athletes as those with “sleep difficulties” (trouble falling asleep, sleeping less than normal” and a control group of “no sleeping difficulties”. Following a concussion, assessment was conducted at day 2, day 5-7 and day 10-14 using the Post Concussion Symptom Scale (PCSS) and found that those with pre-injury sleep difficulties had significantly increased symptom severity and decreased neurocognitive function for longer than the control group.

woman-who-cant-sleep-article

Looking in the other direction, Kostyun et al (2014) (here) assessed the quality of sleep after a concussion and its subsequent impact on recovery. Looking at 545 adolescent athletes, the results indicated that sleeping less than 7 hours post-concussion significantly correlated with increased PCSS scores, where as sleeping over 9 hours post injury significantly correlated with worse visual memory, visual motor speed and reaction times. A word of caution with this study, the authors assumed that “normal” sleep was between 7-9 hours – but anyone who has adolescent children, or hasn’t blocked the memory of being an adolescent themselves, knows that sleep duration does increase when you are growing. Saying that, the impact of both of these studies suggests that we should be:

1) Asking about normal sleep patterns prior to injury to help us gauge recovery times (disrupted sleepers may take longer than we originally predict) and;

2) We need to keep monitoring sleep quality along with regular re-assessment as sleeping more than normal may indicate ongoing recovery from concussion.

 

In Part two (here), Kate continues to discuss ongoing assessment and the recovery process.

Kate is a band 6 MSK physiotherapist, having graduated in 2011 from Cardiff Univeristy. Beyond her NHS work, Kate has worked for semi-pro Rugby League teams in Wales, the Wales Rugby League age grade teams and is now in her 3rd season as lead physio for the Newport Gwent Dragons u16 squad.

 

 

 

 

 

 

Rehabbing teenagers can be awkward! – sensorimotor function during adolescence

There is a bit of a buzz phrase in rehab about “individualising programs” and while it is something we wholeheartedly agree with, it is a phrase that is very easy to say and yet very difficult to implement. Especially when you work with a population where said individual changes rapidly through time, like a teenager! It is a common sight on a training pitch to see a star player in their age group suddenly tripping over cones or developing a heavy touch where there was previously effortless control. Side effects of the adolescent growth spurt, where the brain is now controlling a much longer lever. It’s like giving a champion gardener a new set of garden sheers when for the past year they have used little hand-held scissors and asking to them maintain their award-winning standards. (My garden embarrassingly needs some attention and it’s affecting my analogies).

Master-Gardener-Pruner-Secateurs-Shears-Garden-Hand-plants-Shears-trim-cutter-easy-carry-Garden-Tool
The control and precision between these two instruments is influenced by the lever length of the handles…
87453965_XS
…Similar to a rapidly growing femur and tibia which is still being operated by muscles that have length and strength suitable for shorter levers.

 

 

 

 

 

 

 

 

Alongside the performance related issues, there is suggestion that this period of growth may coincide with increased risk of injury (Caine et al 2008). We believe that bone grows quicker than soft tissue, so we are asking a neuromuscular system to control a new, longer lever using prior proprioceptive wiring. Imagine our gardener again, for a long time he has been able to keep his pair of scissors close and controlled, now with his extra long shears the load is further away from his body, his back and shoulders are starting to ache. Not sure what I mean? With one hand hold a pencil to the tip of your nose. Now, with one hand hold a broom handle to your nose. The longer lever is harder to control. **I promise it gets a bit more sciencey than gardening and broom handles. **

Managing these growth spurts is something we have talked about before and recently contributed to a BJSM podcast on the topic (Part 1 & Part 2) and a complimentary BJSM blog about “biobanding” during periods of growth and development (here). This particular blog was inspired by a recent (2015) systematic review looking into exactly which sensorimotor mechanisms are mature or immature at the time of adolescence by Catherine Quatman-Yates and colleagues over in Cincinnati (here). The following is a combination of their summary and our examples of how these findings can influence our rehab programs.

Tailoring the program:

We have so many options for exercise programs, that’s what makes the task of designing them so fun. It challenges our creativity. When working with a teenager with sensorimotor function deficits, let’s call them “Motor Morons” for short, we don’t have to totally re-think our exercise list, just perhaps the way we deliver them. We previously spoke about motor control and motor learning (here) and how our instructions can progress just as our exercises do, but the following relates to children and adolescents in particular.

Consider the stimuli.

Children aged between 14-16 have well-developed visual perception of static objects however their perception of moving objects and visual cues for postural control continue to mature through adolescence. When very young children learn new skills such as standing and walking, they become heavily reliant on visual cues. Quatman-Yates et al suggest that puberty and growth spurts (think gardener with new shears) brings new postural challenges that causes adolescents to regress proprioceptive feedback and increase reliance on visual cues again. From a rehab perspective, we need to consider this as part of our balance and proprioception program. How many of us default to a single leg stand and throwing a tennis ball back & forth from therapist to athlete? For our Motor Moron, this may not be an optimal form of treatment in early stages, where it is commonly used, however it may incredibly beneficial to that athlete in the later stages or as part of ongoing rehab as we try to develop that dynamic perception.

Consider the amount of stimuli involved in an exercise versus what your goal of that exercise is

We should also consider the amount of stimuli we add to an exercise. Postural stability in children is believed to be affected by multiple sensory cues. If we consider that children are more dependent on visual cues than adults are, perhaps our delivery of external stimuli should be tailored also. With a multi directional running drill for example, there is sometimes an element where the athlete is given a decision making task (a red cone in one direction and a yellow cone in another) and they have to react quickly to instructions from the therapist or coach. Rather than shouting instructions like “red cone”, “yellow cone” etc, hold up the coloured cone for the corresponding drill. This way we are utilising this developed visual perception, minimising the number of stimuli and also encouraging the athlete to get their head up and look around rather than looking at their feet.

When to include unilateral exercises:

Within adult populations, it is often considered gold standard to make exercises unilateral as soon as tolerable. If they can deep squat pain free and fully weight bear through the affected side, progress them to pistol squats ASAP, or single leg knee drives. However, young children (pre-pubescent) may struggle with this for a couple of reasons.

ff9c9334b94e73fc944175d7a0c54a04
Difficult enough even for an adult to perform, but uncoupling the actions of the each leg & fine muscle movements to maintain balance are extra challenging for children

Firstly, we need to consider postural adjustments. Where as adults and young adults can adjust their balance with smooth control and multiple, small oscillations, children rely on larger ballistic adjustments. There is also reduced anterior-posterior control in younger athletes which suggests reduced intrinsic ankle control. Put this alongside immature structures and (if working a physio, most probably) an injury then single leg exercise become a progression that may be further down the line than an adult counterpart with the same injury. Instead, consider semi-stable exercises. Support the contralateral leg with a football or a bosu ball – something that is difficult to fixate through but provides enough stability to support the standing leg.

Secondly, we understand that coupled movements are mastered earlier in adolescence, around 12-15 years old but uncoupled movement patterns take longer to develop, 15-18 years old (Largo et al). A good example is watching a young child reach for a full cup of water at the dinner table. It is much easier and more natural for them to reach with both hands than it is with one, as coupled movements are unintended. Rarely do you see a child taking a drink with one hand filling their fork with the other – yet this is something commonly seen with adults as they are able to uncouple and segmentalise. Another example is watching a child dynamically turn, watch how the head, trunk and limbs all turn as a “block”, it is not until further down the line where dynamic movements become more fluid. The argument here is that surely running is an uncoupled movement? Or kicking a football, swinging a tennis racket, pirouetting in ballet – they are all uncoupled, segmental movement patterns that we expect kids to do, and in all they cope with. Correct, but it is usually in rehab programs for kids that we begin to introduce unfamiliar tasks and exercises that they may not have encountered before. Also, we should respect the impact of the injury on proprioception and control. So these are all considerations for starting points in exercise & if a regression is ever required.

For this reason, it is important that exercises are monitored and reviewed regularly. There is no need to hold an athlete back because of their age and making assumptions on motor function because of their age. If they can cope, then progress them. But be mindful of “over-control” where speed and variability of movement are sacrificed in place of accuracy and control (Quatman-Yates et al 2015).

Become a Motor Moron hunter

It is worth spending some time watching training, watching warm ups, watching gym sessions and talking with coaches and S&C’s trying to identify a Motor Moron as soon as possible. It’s important to minimise the chances of an immature sensorimotor mechanism ever meeting a growth spurt. It is when these two things combine that we see kids doing immaculate Mr Bean impressions and therefore increase their risk of injury.Safari-kids

Regularly re-assess your exercise programs. If things arent quite progressing as quickly as they should, it may not be failed healing of an injury, but it may be that we are providing the sensorimotor mechanism with too much information!

 

Yours in sport,

Sam

 

“The Young Athlete” conference 9-10th Oct, Brighton. Here

Motor learning theories – why should progression stop at physical?

imagesMRH79NZM

As a younger physiotherapist, I don’t think I ever consciously paid attention to the psychological aspect or power of my job. By that I mean, I didn’t read any research around it – it all seemed a bit wishy-washy and non-tangible. But quickly you realise that a verbal cue that just clicks with one patient turns into a complex dance choreography with another.. “No, I just wanted you to bend you knee.. why are you doing the worm?”

I’ve talked before about the clinical reasoning behind exercise progression and regression and in doing so, I skimmed the surface of the addition of intrinsic & extrinsic stimuli.  So now I want to build on the concepts of motor learning to underpin that exercise progression.

My inspiration for this blog came from a couple of podcasts by the PT Inquest gang, Erik Meira (@erikmeira) & JW Matheson (@EIPConsult). Well actually, first I bought a chinchilla, then I wrote this blog. If that doesn’t make sense, don’t worry. It doesn’t. But listen here (PTInquest).

Funny chinchilla1

The gents speak in detail on two particular podcasts about non-linear pedagogy and how this teaching concept & theory of motor learning ties in with implicit learning. I will break down the idea and definitions shortly, but the reason I wanted to blog about this rather than just direct listeners to the podcast, is I feel the motor learning concepts need to be progressed just as much as the physical demands of an exercise are considered.

explicit

What are we talking about?

Ok so breaking down some of the terms. Because from first hand experience, these terms can be confusing. Cap in hand moment but, I Published a model to explain exercise progression (here). You will see I have described implicit & explicit learning – where in fact I mean intrinsic and extrinsic. Very different things, here’s why:

Intrinsic exercises – relies on internal feedback mechanisms, such as capsuloligamentous structures – Pancian & Ruffini receptors within joint capsules providing proprioceptive feedback that the athlete is acutely tuned into. A good example is a single leg stand where the athlete is consciously thinking about balance, aware of every movement in the foot & knee, the upper body and arm position etc – those exercises where nothing else in the room matters apart from the mark on the floor you are concentrating on to keep your balance.

The opposite to this are Extrinsic exercises – these revolve around the athlete and their environment. A snowboarder reacting to a sheet of ice after carving through powder, or a downhill biker absorbing the changes in terrain – their thought process is very external. Its about the factors they can’t control. At no point (or at least for an extremely limited time) are they consciously aware of their scapular position or degree of knee valgus, for example.

Explicit teaching – This is probably something that is easy for us to relate to. It’s a teaching technique that most of us are comfortable with because we can achieve quicker short term goals. “I want you to put your feet shoulder width apart” or “keep your knees in line with your second toe during the squat” – very clear instructions that require the athlete internalise their thoughts, suddenly their actions become intrinsic. But we get quick results in line with our (not necessarily their) goals.

Implicit teaching – this is a bit more tricky. It is giving the athlete non-directive instructions with the aim of externalising their thoughts. “When you jump onto that box, I want you to land as quietly as you can” or as the PT Inquest lads say “Land like batman” (in the batman voice). If you are encouraging effective change of direction, Conor always says “Push the ground away with your foot.” We are still giving instructions, but the athlete is thinking about external environment; noise, surface contact etc.

And this is where non-linear pedagogy comes in. Creating learning environments for athletes to explore movement variability. After all, that perfect text-book single leg squat we spent weeks mastering isn’t going to look so perfect on a skier trying to regain their balance. Chang Yi Lee et al (2014) use the example or learning a tennis stroke – comparing linear pedagogy of prescriptive, repetitive drills versus non-linear pedagogy of more open instructions like “make the ball arc like a rainbow.”

Think shoe lace tying - easier to learn with the rabbit going round the tree etc
Think shoe lace tying – easier to learn with the rabbit going round the tree etc

 

How does this fit into progression?

The ideal scenario is for the athlete to have as little reliance on us as therapists or coaches as possible. We wont be following them around the track, or on the pitch reminding them of their pelvic tilt.

I think the concepts of non-linear pedagogy are brilliant to explore with coaching. Working with young athletes for example that are still developing their motor control and have some fantastic imaginations to tap into.

However with a rehabilitative role, I think we need to be more inclusive of all concepts. Learning of a new task is initially rapid but without the addition of further stimuli it can quickly plateau (Gentile 1998). A rehab program should always be low risk, high demand (Mendiguchia & Brughelli 2011).Consider the pathophysiology and the structures injured. No injuries happen in isolation, if muscle is injured we will have some neural limitations also. The presence of swelling and inflammation decreases cell metabolism along with a decrease in the presence of oxygen; so we can assume that proprioception is reduced and risk of secondary injury is high.

Therefore, following injury, it is always a good concept to assume that skill level has regressed to novice, regardless of the level of athlete pre-injury.

th8HKBHUZC
“So whats the knee brace for?”                                             “Well you only had your surgery 2 weeks ago – just being safe”

What if we were to encourage intrinsic, explicit, linear pedagogy exercises in the early stages? We don’t need to be adding external stimuli at this stage. It’s important to internalise in order to rehabilitate proprioception. You can’t safely expect someone to externalise while proprioceptively deficient – as soon as someone can weight bear, we don’t start throwing them a tennis ball whilst stood on a Bosu (I hope!)

As the injury improves and skill levels progress, it is then important to move our instructions towards non-linear pedagogy methods, encouraging extrinsic thinking via implicit instructions. By end stage rehab, our instructions should be “start – stop” and hopefully not much more.

Just as we would progress the demand of physical activity following injury, we should really progress the cognitive demand also – but we need to start from a safe, effective position in acute stages.

Yours in sport,

Sam

Massage: A case for the defence

fmsl8

Just because we can’t prove what something does, doesn’t mean it doesn’t do anything.

The older I get, the more I read, the less I know. I know that for a fact. But recently I’ve started re-reading around the topic of massage and its place in sport and recovery. And with my critical head on, the one thing that I can consistently critique is the literature. The methodology, the participant population, but not necessarily “Massage” itself.

A good starting point for this defence would be to read the antithesis for this blog, a great blog by @AdamMeakins (There is no skill in manual therapy). Adam makes a valid point that there is not a strong background of evidence to support massage. Agreed. And its worth pointing out that a large, very large, part of my practice is exercise based rehab – I’m a strong believer of “move well, move often”. However, massage is a very well used tool in my pocket of possible treatments, so I’m going to fight for the underdog.

Below is a summary of terms / applications commonly used with recognised massage techniques (not an exclusive list).

Table 1: A summary of western massage techniques (Weerapong et al)

Technique Definition Suggested Application Proposed clinical effects
Effleurage Gliding movement over the skin in a continuous movement Beginning & end of a session Stimulates the parasympathetic nervous system, promotes relaxation and enhances venous return.
Pretissage Lifting, wringing, squeezing and kneading of soft tissue. Following effleurage Mobilise deep muscle and subcutaneous tissue. Increases local circulation and enhances venous return
Friction An accurate penetration of pressure applied with the fingertips Used for specific purposes, such as reducing muscle spasm or breaking down adhesions. Break down adhesions from old injuries
Tapotement Various parts of the hand striking the tissues in a rhythmical but rapid rate Before and during competition Stimulation of tissues either by direct mechanical force or by the reflex action

 

The problem with Evidence Based Practice:

I think that all medical professions are dependent on research to ensure our practice evolves for the better. But I think sometimes we overlook the importance of anecdotal evidence. It must be considered that not all aspects of sporting competition depend on physical attributes, the mind and perceived benefits of treatment play an important role. The majority of people that go back for massages are because it made them feel better. Maybe not during, but after. A prime example, my wife never says “Can you give me an exercise program for my neck & shoulders please?” But I know that anecdotal evidence on its own doesn’t wash.

So here is where I think the literature lets massage down. The effectiveness of massage will vary depending on duration, method and depth of pressure (Drust et al) however none of these variables have been standardized making comparisons between studies very difficult (Mancinelli et al).

Jönhagen et al investigated the effects of sports massage on recovery following eccentric exercise. 16 “recreational athletes” (I have issues with this terminology for a start) were asked to complete 300 maximal eccentric contractions of their quadriceps using a Kin-Com dynamometer. Subjects received a pretissage massage once a day for 3 days before re-testing single leg long jumps to analyse “functional recovery”. SHOCK – The study found no improvement in function following massage.

51pbxuNg7FL._SX200_
@ConorMcGoldrick has been quiet on blog front, but promises he is still working hard in the gym. Trying a new technique of 300 eccentric max contractions

 

  • Firstly, it may not be possible for one to truly maximally contract for such a high number of repetitions, therefore cannot be considered functional for an athlete; professional or recreational.
  • Secondly, name a sport that requires 300 maximal eccentric contractions in succession. Even an eccentric dominant sport like basketball would be interspersed with periods of rest and I don’t imagine basketball players would define those eccentric actions as maximal.
  • Thirdly, pretissage is a deep and firm technique, the use of which immediately following 300 eccentric contractions and continued for 3 days is more than likely going to cause mild muscle trauma. Not exactly a therapeutic choice for a tissue with acutely induced micro-trauma.

In another study investigating fatigue, Zainuddin et al studied the effects of massage on the upper limb following 60 maximal eccentric contractions of the elbow flexors of a single arm in 10 healthy subjects (5:5 M:F). The results indicated no significant change between the two arms in isometric & isokinetic strength and torque, but it did find reductions in muscle soreness and swelling. The lack of significance in the results may be due to measurements, including maximal strength, being taken before, immediately and 30 minutes after, and at 1, 2, 3, 4, 7, 10 & 14 days after, which may have been too many re-assessments of maximal strength following eccentric activity. Also, the 10 minute massage protocol consisted of 3 minutes frictions to the major muscles in the upper limb. As explained earlier, frictions are designed to promote inflammation, not to promote recovery!

The point of these studies was to investigate the use of massage in recovery from sport. Eliciting DOMs in untrained subjects and concluding that they still hadn’t returned to baseline in 3 days is not representative of the demands you will be faced with in sport. For the most part, the athletes are familiar with the exercise, so apart from pre-season or the introduction of a new exercise technique, DOMS is relatively rare throughout a season.

lactic-acid-myths
No blog on massage would be complete without mentioning Lactic Acid

Fatigue is believed to be determined by the accumulation of lactate in exercising muscle (Monedero & Donne). However, the notion that lactic acid (consisting of lactate ions and H+) is detrimental to muscle function is derived from early findings on amphibian muscles, in which acidosis is more pronounced than mammalian musculature. These early studies were conducted at 10-20°C, when they were repeated at 25-30°C the effects of acidosis were abolished (Cairns). Studies on human skeletal muscles have shown a positive correlation between increased lactic acid and muscle fatigue, but what is usually overlooked is that there is also a relationship between fatigue and a decrease in ATP, increases in inorganic phosphate and increased ADP, as well as decreased nitrous oxide and reactive oxidative species (Franklin et al) – so why do we bang on about lactate clearance all the time?!

There is now a belief that lactic acid may have ergogenic effects on performance. It is well known that acidosis stimulates the Bohr effect, whereby H+ causes the release of oxygen from haemoglobin, which stimulates increased ventilation, enhanced blood flow, and an increased cardiovascular drive. (Cairns). Despite this recent shift in opinion, many studies still believe lactate to be detrimental to performance, and investigations continue into the most efficient method of lactate removal.

Monedero & Donne investigated different recovery strategies after maximal exercise using 18 trained cyclists. It was concluded that a combined treatment of massage and active recovery was significant in aiding future performance compared to passive recovery, active recovery or massage alone. Despite quoting in the introduction that “the role of lactate in fatigue is questionable”, the removal of lactate forms the bulk of the conclusion as to why massage alone was not a viable treatment for recovery.

 

Judging a fish by its ability to climb trees:

I mentioned earlier that I have reservations over the term “recreational athletes” – its unclear if this is an accepted scholarly word for “weekend warrior” or if its 3-times-a-week gym goers at the local spa and health club. Even so, the use of these participant populations to make assumptions on elite sport should be taken with caution. So should the use of athletes asked to perform unfamiliar tasks. Robertson et al used cycling to exhaust 9 male subjects and found no significant effect with blood lactate clearance following 20 minutes massage. However participants were from field based backgrounds such as football, rugby and hockey.

A study by Mancinelli et al investigated the effects of massage on DOMS using female athletes. 24 volleyball and basketball players underwent a vigorous strength and conditioning training session to elicit DOMS. The study found that the massage group (n=12) had significant increases in vertical jump scores (P=0.003) and decreased levels of perceived soreness (P=0.001), while the control group significantly increased their shuttle run times (P=0.004). The study that used functional tests appropriate to the subjects sport found favourable results for massage.

More recently, in a series of studies Delextrat et al (and again here) compared the benefits of massage alone and in combination with other recovery modalities (stretching; cold water immersion) using basketball players. Again using measure specific to the sport. While I question the conclusions about different reactions between sexes (9:8 M:F), there was significant improvements in interventions compared to control groups, supporting the use of massage as a recovery modality.

massage

So what do we think massage might do but we can’t prove?

“Massage therapy modulates the autonomic nervous system” – Franklin et al

The good thing about the Franklin paper is that it looks at potential systemic effects of massage, in particular the vascular endothelial function of the upper limb following lower limb massage – and they found a single treatment of massage had an immediate (90mins) parasympathetic nervous system response, characterised by reduced heart rate and reduced systolic blood pressure.

We think that massage, administered appropriately with appropriate techniques to suit the situation, may:

  • Decrease pain (Mancinelli et al; Delextrat et al)
  • Reduce swelling (Weerapong et al)
  • Improve mood state (Hemmings et al; Robertson et al)
  • Increase range of movement (Rushton et al)

I would question the last point – for how long does this influence last? Do we actually increase length? Or do we restore it following a loss of range (injury / pain / change in tone following exercise)? I don’t think even regular massage is enough to encourage creep deformation on tissues, but I’m more open to a change in tone to achieve an optimal length / range.

 

Conclusion:

Therapists working within a sports setting often have to adapt the duration of a massage depending on the number of athletes that require treatment, the number of clinicians available, the seniority of players (!) Clinical based MSK therapists may also be restricted by time constraints. There is also a dearth of techniques and combinations with other modalities to chose from. Two therapists performing the same technique will apply different pressures for different durations in slightly different directions possibly over different tissues. I can see this being an argument against, but its for this reason that its very difficult to measure and quantify effectiveness. To create a sturdy study design, you end up being far removed from how clinical practice actually operates. My point is, although it is important I don’t think you can base an opinion of an intervention soley on published literature.

A lot of the literature with non-significant findings will question the use of massage in clinical application, but I can’t think of any occasions where the intervention has caused a detrimental effect! This leads me back to my first sentence.

Just because we can’t prove what something does, doesn’t mean it doesn’t do anything.

Remember that the field I practice in means I’m exposed to athletes for long periods of time through the day and through the week. As a proportion of that day, massage does not make up a large percentage of treatment time. Gym based, movement optimisation does. So I’m not saying we should all go and massage every athlete and patient that requests it. Like everything I think there are certain individuals that benefit from certain techniques and methods. Given time restraints in an outpatients clinic, it may not feature at all as part of my treatment. But regardless of the size this cog plays in the treatment machine, I believe its a valuable one.

Little-cogs Yours in sport

Sam